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Foreword

The paradox of quantum physics resides in the contrast between its extraordinary
power and its strangeness. Every physicist will agree that it is the most successful
theory ever invented. It has given us the keys to understand the microscopic
world and to derive from this understanding the modern technologies that have
revolutionized our lives. Indeed, there is hardly a single apparatus in use, nowadays,
that does not in part or totally rely on quantum phenomena. Lasers, computers,
atomic clocks, the GPS, magnetic resonance imaging, the cell phones to name only
a few exploit in one way or another quantum concepts and they would have been
unimaginable by a classical physicist. Yet, in spite of this huge power, quantum
physics remains highly counterintuitive, leading to many conflicting interpretations
some of which are discussed in this book.

The tension between these two aspects of quantum physics, its power and its
strangeness, has constantly been present during the 100 years this theory has been
with us. During the formative years of the theory (from 1900 to 1930 roughly), the
bizarre quantum concepts have given rise to fierce debates between the founding
fathers. Then when the successes of the calculations based on quantum ideas
had become overwhelming (from the 1930s to the 1970s), the discussions about
interpretation took a backseat, most physicists being content to use this powerful
tool without too much afterthought, in order to understand the world and to master
it. This was the shut up and calculate! period. Those physicists, including Einstein
and de Broglie, who struggled to reconcile quantum concepts with their ideas about
physical reality, were a minority. With their disciples, they lost contact with the
mainstream of research of that time, and one might argue that they did not contribute
much to the tremendous progresses of physics during that period.

Feynman, a leader of the successful physics school that used quantum concepts
without challenging them, could dismiss their efforts by saying that the kind of
paradoxes they were struggling with were just a contradiction between what Nature
is and what they wanted it to be. In other words, Feynman agreed with the famous
phrase Bohr is supposed to have told Einstein: Stop telling God what to do with
His dice. At the same time, Feynman acknowledged, however, the strangeness of
quantum physics by saying nobody really understands quantum physics. In this
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vi Foreword

somewhat “tongue in cheek” way, this provocative sentence again echoes what Bohr
is supposed to have said: Anyone who is not shocked by quantum theory has not
understood it. This state of affairs is illustrated by an anecdote Steven Weinberg is
telling in one of his books. In an elevator of the Physics Department, he once met a
colleague and a former student whom he had lost track of. After the student left, he
asked his colleague: “What happened with this guy?” and the colleague answered:
Oh, he is lost for physics, he got interested in the Interpretation Thing.

I must say that during my early years in physics, I tended to be an adept of the
shut up and calculate school. This is undoubtedly due to having learned quantum
mechanics from Messiah’s books and directly from the lectures of Claude Cohen-
Tannoudji (who had not yet written his own textbook on the subject). He described
the principles with great clarity and used them efficiently to lead us directly to
calculations explaining important effects and beautiful historical experiments. And
when I started my own research for my Ph.D. under his supervision and later on
in my own lab with my students, I realized that quantum calculations allowed me
to predict with high precision how atoms were behaving in the resonance cells I
was experimenting with. I could not see the atoms directly then, but all observations
pointed to the fact that they were certainly there and that they did exactly what
quantum mechanics was predicting. Among these experiments, some had to do with
observing cascades of successive photons emitted by atoms as they decayed step-by-
step from an excited state. The pattern of emission of polarized light was predicted,
beautifully and precisely by simple calculations based on the quantum theory of
angular momentum, with the help of some Racah algebra.

At that time, Claude received the visit of a young and enthusiastic student
working in another laboratory at Orsay who was interested in challenging the laws
of quantum physics precisely by performing an experiment that would enable him to
study the correlations of photons emitted by atoms in a fluorescence cascade. Alain
Aspect, this is his name, was trying to implement in the lab an experiment suggested
by a CERN physicist, then unknown to Claude and of course to me, namely John
Bell. With this experiment, he was trying to improve on earlier work of the same
kind performed by an American physicist, John Clauser. It is to the credit of Claude,
whom we all considered the “pope” of orthodox quantum physics that not only did
he not dissuade Alain Aspect, but he actually encouraged him to do the experiment.
Claude told me about it and I remember being puzzled. I could very simply calculate
what quantum physics was predicting in such a simple situation and that the result
could be different was unthinkable for me. My reasoning was simple. If Bell’s
inequality is right and quantum mechanics wrong in this simple case, how come that
its predictions have been vindicated in thousands of experiments (including mine)
that were monitoring atomic cascades under similar conditions? We would have to
build a new theory that should still agree with all the data accumulated so far and at
the same time, explain why, under the particular conditions of Aspect’s experiment,
it was yielding another result.

Later on, I understood that Aspect (and Claude who had encouraged him) were
right, even if in the end Alain’s experiment vindicated quantum physics. In most
experiments so far, the observations were dealing with big samples containing huge
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numbers of atoms, and were recording only average signals. Aspect’s experiment
was one of the first that revealed the correlations between the photons emitted by
an atom in a single event (these correlations averaged, later, over many realizations
of the same experiment in order to build the expression violating Bell’s inequality
in agreement with quantum theory). Instead of first averaging data and looking at
the relationships between these averages, he was recording individual correlations
before performing averages. It was important to find out whether the theory was
right under these new conditions.

Here the concept of entanglement was central. Of course, we all knew that
entanglement was a feature of quantum physics. After all, the ground state of the
simplest of all atoms, Hydrogen is an entangled state of an electronic and nuclear
spin, and this fact has been well known since the beginning of quantum physics.
Entanglement, however, is not as spectacular when the entangled partners are only
one Angström apart as when they are distant from each other by metres. Even if
quantum theory did not put any limit to the distance at which entanglement should
manifest itself, it was certainly worthwhile testing it. Future developments amply
demonstrated that entanglement at a distance could lead to applications, unforeseen
at that time, for quantum communication in particular and this largely explains the
renewed interest in Bell’s inequality tests decades after Aspect’s early work.

For a long time however, Aspect’s experiment remained an isolated tour de force.
He went to work in other directions exploring first with Claude Cohen–Tannoudji,
then with his own group, properties of atoms cooled and manipulated with laser
light. Other physicists started cooling individual ions in traps and controlling with
ever increasing precision their evolution. In my own group, with my colleagues
Jean-Michel Raimond and Michel Brune, we focused on the study of photons
trapped in high-Q superconducting cavities and interacting with Rydberg atoms,
this domain being now known as Cavity Quantum Electrodynamics.

In all these experiments, single isolated quantum systems were monitored.
Concepts that had been discussed in the context of thought experiments in the early
days of quantum physics such as complementarity, quantum jumps and, of course,
entanglement came back to the forefront of discussions among physicists since their
manifestation became directly observable in real experiments. I remember that the
existence of quantum jumps was challenged by some physicists, before such jumps
became directly observable first in ion trap work, then in Cavity QED experiments.
While, in the old times, experimentalists in atomic and molecular physics could
explain their observations with the help of a density operator which dealt with
ensemble averages evolving smoothly and without jumps, the new experiments
required the description of single quantum trajectories, for which the density matrix
approach was inadequate. Monte Carlo calculations, in which random quantum
jumps were introduced in computer simulations of single quantum histories became
the new tool replacing the Bloch equation approach of the density matrix formalism.
With these tools, it became easy to compute high order correlations observed when
measuring all kinds of observables in a long time sequence and to test the results
of these predictions in increasingly complex experiments. So far, all of them have
vindicated quantum mechanics.
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One of the nagging questions remaining open has to do with the quantum-to-
classical boundary, the so-called Schrödinger cat paradox. Is there a maximum size
up to which quantum behaviour is directly observable? This question naturally arises
in the field of quantum information, where we try to harness the strange laws of
the quantum domain to communicate or calculate in new powerful ways. Quantum
information science will make it necessary to manipulate quantum systems of
macroscopic extension and made of large numbers of particles. We have of course to
define the meaning of “size” for these systems. If we take it as meaning the distance
between parts of a quantum object, we have learned from recent experiments, by
the Gisin and Zeilinger groups notably, that entanglement can survive over many
kilometres, without any indication of limitation so far. If we mean the number of
particles in the system, we know that large molecules made of thousands of nuclei
and electrons can give rise to interference effects and that fields made of hundreds of
photons can exist in superposition states. Not to speak of superconducting circuits
or degenerate quantum gases made of thousands to millions of particles, which can
be prepared in state superpositions involving two or more components.

These superpositions are very fragile and are eventually destroyed by decoher-
ence, a phenomenon linked to the coupling of the system to its environment. Some
physicists believe that, beyond the mundane decoherence process, which involves
entanglement with the environment well explained within the “orthodox” quantum
theory, there may exist a yet undiscovered mechanism that makes the quantum
laws invalid for large enough systems. I suspect that, behind this idea, there is
the circumstance that some physicists still find it unacceptable that God is playing
dice. The fact that the theory is at its heart probabilistic is bothering them and
they would like to find a way to escape from it at least when large objects such
as measuring devices are concerned. In fact, they are looking for a mechanism that
would determine in which state the Schrödinger cat is after the box is opened. That
decoherence has destroyed the coherence between the live and dead cat state is not
enough for them. They want to explain how the fate of the cat is finally decided and
they do not like the idea that it is left to pure chance.

In the end, the question of the validity of quantum physics for large objects
will have to be decided by experiments. What I think about the likely outcome
of such experiments or what those who are trying to perform them expect or
hope is not really relevant. The answer will have to be given by Nature, and
if quantum physics shows some kind of limitation, it will have to be modified
(even if it is hard to imagine how). The development of quantum information
theory and the concomitant multiplication of experiments manipulating quantum
objects of all kinds—atoms, molecules, photons, quantum dots, superconducting
circuits, mesoscopic cantilevers, etc.—make us much more conscious than in the
1960s or 1970s of the questions about quantum physics that can be answered by
experiments. Developing methods to control or counteract decoherence—quantum
error correction or quantum feedback—is not only necessary for implementing
future quantum logic machines, but is also important to make us probe the true limits
of the quantum world. If new ideas “à la John Bell” emerged to discriminate between
various interpretations of quantum theory or to look for decoherence beyond the
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“environment induced model”, we would certainly try to test them with the new
tools we are developing. The right attitude for experimentalists towards quantum
theory should thus be to trust but verify, rather than to shut up and calculate.

For now, we have to live with the present theory, which has been and still is so
successful at explaining and predicting. This is not such a bad situation. Beyond that,
do I find it bizarre that a physical quantity such as the polarization of a particle or the
number of photons in a box has no meaning before it is measured? or that quantum
systems undergo random jumps which cannot be predicted deterministically?, or
else that it makes no sense to even talk about these jumps if there is not a detector
to observe them? At some level, yes of course, I find all this weird, because this is
contrary to my classical intuition, formed by the observation of macroscopic events,
which occur even if you do not look at them.

I try to convince myself that there is even a Darwinian explanation to that
apparent strangeness of the quantum world. Our brain has evolved over generations
to adapt to the classical world, in which the underlying quantum phenomena are
“veiled”, according to the poetic statement by D’Espagnat. It is useful, for our
survival, to have an intuition about the classical trajectory of a stone thrown at us,
but not about how an atom crosses a double slit, in a superposition of trajectories.
We have not even coined words in our everyday language to describe that weirdness.
Thus, at some level, the world of atoms is indeed strange to us. We have, however, a
beautiful language to describe it, the language of mathematics. Using simple math,
we experimentalists in quantum physics have been generally able to predict what
happens in our atomic beam machines or in our resonance cells when we design an
experiment. This is a different form of intuition than the one of laymen, but it is still
an intuition of sorts.

However, there are situations where this simple mathematical “intuition” eventu-
ally fails. Even with the help of the most powerful “classical” computers, we cannot
solve the Schrödinger equation of a quantum system containing more than a few
tens of two-level atoms and we are thus unable to predict in detail what happens
in situations where complex massive entanglement is involved. Novel effects such
as exotic quantum phases of matter in two or three dimensions may thus escape
our understanding. We hope that, here, experiments will come to our help. We are
developing methods using cold atoms in optical lattices or ions in traps, or connected
superconducting circuits, to emulate these complex situations by reproducing, at a
different scale, the precise conditions of the real situation involving tens to hundreds
of particles. By having these artificial systems evolve and observing them in our
labs, we hope to find out how real system behaves. These quantum simulators,
predicted by Feynman in a prescient article 30 years ago, are the new tools we
will try to use in order to keep probing the mysteries of the quantum world.

Serge Haroche





Preface

A little less than 3 years ago, the editors of this book organized a program
on recent developments and modern problems in quantum physics, entitled The
Message of Quantum Science—Attempts Towards a Synthesis, which took place at
the “Zentrum für interdisziplinäre Forschung” (ZiF) of the University of Bielefeld.
Thus, between the middle of February and the middle of May 2012, a series of
seminars and discussions and two workshops took place that attracted quite a
number of distinguished theorists and experimentalists.

It was the very lively and stimulating atmosphere prevailing during our program
and, in particular, during the two workshops that gave rise to the idea to put some of
the insights gained in the course of our activities on record and attempt to publish a
book containing essays by a certain number of participants. We are most grateful to
all people who participated in and enriched our program and who helped to promote
and deepen our understanding of quantum physics. Although not all of them have
made contributions to this book, we would like to acknowledge that, without them,
this book would not exist.

One might be tempted to say that Quantum Mechanics (QM) is so exceedingly
well established and understood that attempting to publish a book like this one is
a little like “carrying coals to Newcastle”. Our distinguished colleague Berthold-
Georg Englert has argued that QM is spectacularly successful and reliable; there
is no experimental fact, not a single one, that contradicts a quantum-theoretical
prediction.1 Yet, it is an experience made very frequently that when grown-up
physicists and, in particular, theorists start to discuss problems concerning the
foundations and the interpretation of QM, it does not take long until a state of
considerable confusion is reached, and their deliberations usually tend to become
quite emotional. In his paper Introductory Article: Quantum Theory,2 Gianfausto
Dell’Antonio writes: Quantum mechanics today is a refined and incredibly success-
ful instrument . . . but its internal consistency is still standing on a shaky ground.

1Eur. Phys. J.D. (2013) 67 238.
2Encyclopedia of Mathematical Physics, Elsevier (2002).
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xii Preface

Although we do not see any compelling reasons to doubt the internal consistency
of QM, we do think that there are many issues concerning the foundations and the
interpretation of QM that are still rather puzzling and not nearly as well understood
as they ought to be. This opinion or conviction was among our reasons to organize
a program on Quantum Science.

Other reasons why we were eager to convene specialists in quantum physics are
related to—among others—the following exciting developments: Recent years have
seen major experimental advances in the exploration of realms of the “quantum
world” that had previously been inaccessible. These advances vastly augmented
our capabilities to test fundamental features of Quantum Mechanics and quantum
many-body systems and to manipulate quantum systems, such as individual atoms,
atom gases and light. Some of this progress relies on major experimental and tech-
nological breakthroughs in exploiting the electromagnetic field and, in particular,
its quantum properties and its interactions with matter—new lasers, laser cooling,
optical lattices, magnetic traps, cavity QED, microscopy, etc.—and on advances in
semi-conductor technology. The former has led, for example, to the experimental
realization of Bose–Einstein condensates in dilute atom gases confined in magnetic
traps and of other exotic quantum fluids, to the configuration of artificial crystals
consisting of atoms located at the sites of optical lattices, and to numerous other
exciting discoveries in the manipulation of quantum systems. The latter has given
rise to new quantum Hall liquids (i.e., 2D electron gases exhibiting the quantum Hall
effect) and novel possibilities of manipulating them and exploring their properties,
e.g., measuring the fractional charges of quasi-particles, and to the discovery of
novel states of matter in two and three dimensions called “topological insulators”.
One may also think of the discovery of graphene and its exotic quantum properties,
such as the occurrence of “relativistic Dirac fermions” as quasi-particles. Some
of these advances and discoveries were featured in lectures at our workshops,
although it was not possible to do justice to all the exciting recent developments
and breakthroughs.

Another direction in Physics that has seen tremendous progress, in recent years,
is concerned with the study of the early universe and, in particular, with phenomena
studied in cosmology and astro-particle physics that are suspected to belong to the
realm of the “quantum world”, such as structure formation in the early universe,
dark matter and dark energy. This direction holds enormous promise for important
future discoveries, including ones affecting the foundations of fundamental physics.
Unfortunately, it could not be featured adequately, in our program—not least for
lack of competence on the side of the organizers.

In order not to end up with too broad and voluminous a book, we had to decide
to put the focus of this book on a more or less well-defined area in quantum physics.
We have chosen to emphasize the foundations of Quantum Mechanics and the
puzzling effects observed in the “quantum world”. There are many new experiments
in this general area, such as interference experiments with very large molecules
passing through double-slits, ones that test the validity of the Kochen–Specker
theorem, new tests of the violation of Bell’s inequalities and of consequences
of entanglement, new non-demolition measurements and tests of “wave-function
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collapse”, experiments realizing quantum-teleportation, etc. One might also think
of the progress in the study of open quantum systems, quantum transport and
decoherence. Many of the effects encountered and studied in such experiments have
real or tentative applications in the fields of quantum information science, quantum
cryptography and quantum computation. Some of these applications have actually
already been implemented in devices.

The experimental developments just alluded to have raised many challenging
questions for theorists, some of which have been actively addressed and answered
in recent years. All this has led to a new surge of interest in the foundations of
Quantum Mechanics, which have puzzled physicists ever since the discovery of this
theory, almost 90 years ago.

One main goal of our program was thus to gather experimentalists and theorists
studying fundamental aspects of quantum physics and have them review and discuss
the present state of affairs and draw our attention to some of the important open
problems in their particular areas. We are deeply grateful to all the speakers in our
seminars and at the workshops for the efforts they made to communicate their views
to an interested audience, which, by and large, turned out to be very successful. Most
contributions to this book have grown out of lectures presented to the participants
of our program. We thank all the authors of the chapters appearing in this book for
the care they took in writing their contributions and, in particular, Serge Haroche for
having agreed to write an Introduction. We very much hope that the reader will find
the material included in this book as stimulating and enlightening as the lectures
were, and we wish him/her pleasant reading and much benefit in studying it.

To conclude, we have the pleasure to express our sincere gratitude to the direction
and the staff of the ZiF for hosting our program and for generous support. We are
very grateful to Marina Hoffmann for her invaluable help and assistance before and
during our program at the ZiF. We thank Hanne Litschewsky for her dedicated help
in collecting the manuscripts of the contributions to this book, editing them and
preparing them for publication.

“In the name of all his friends we would like to dedicate this book to the memory
of our dear colleague and friend Walter Schneider (1938–2014). It has been a great
privilege for us to profit from his vast knowledge and his critical comments on
innumerable occasions. His loyalty, generosity and fine humor have been exemplary
and will be remembered. - Er wird uns fehlen!”

Bielefeld, Germany Philippe Blanchard
Zürich, Switzerland Jürg Fröhlich
August 2014
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Chapter 1
Theory of the Decoherence Effect in Finite
and Infinite Open Quantum Systems Using
the Algebraic Approach

Philippe Blanchard, Mario Hellmich, Piotr Ługiewicz, and Robert Olkiewicz

1.1 Preliminaries

Quantum mechanics is the greatest revision of our conception of the character of the
physical world since Newton. Consequently, David Hilbert was very interested in
quantum mechanics. He and John von Neumann discussed it frequently during von
Neumann’s residence in Göttingen. He published in 1932 his book Mathematical
Foundations of Quantum Mechanics. In Hilbert’s opinion it was the first exposition
of quantum mechanics in a mathematically rigorous way. The pioneers of quantum
mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor
much interest in it. Conceptually, quantum theory as developed by Bohr and
Heisenberg is based on the positivism of Mach as it describes only observable
quantities. It first emerged as a result of experimental data in the form of statistical
observations of quantum noise, the basic concept of quantum probability.

The central concept in von Neumann’s book is an abstract Hilbert space. The
unexpected usefulness of Hilbert spaces arises from the fact that the equation of
motion of quantum mechanics, Schrödinger’s equation, is linear.

For the description of systems with infinitely many degrees of freedom the theory
needs a generalization of the standard Hilbert space formulation. Von Neumann
liked to spell out physical problems in an abstract and general language, and
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therefore formulated quantum mechanics as a theory of operators on Hilbert space
(what is today known as the theory of C*-algebras and von Neumann algebras).
He was influenced by Heisenberg’s quantum matrix dynamics, a new and highly
original approach to the mechanics of the atom, and obtained remarkable—though
incomplete—results.

Quantum mechanics is incredibly successful: no phenomenon up to now has been
found which contradicts it. The Copenhagen rules as formulated by Bohr can be
used as a pragmatic recipe to arrive at experimentally testable conclusions from the
Hilbert space formalism. Despite the puzzling nature of the measurement process in
quantum mechanics, these rules work very well in practice, so they are justified “for
all practical purposes” (FAPP), as it was put by John Bell.

Von Neumann’s algebraic framework of quantum mechanics is general enough
to accommodate both classical and quantum systems, and thus facilitates the
description of situations in which quantum systems develop classical behavior in
a FAPP fashion. For this reason, foundational issues of quantum physics are best
discussed in this framework. Nevertheless, despite the possibility of formulating
classical physics in the algebraic framework, the von Neumann epistemic principle
claims that, at a fundamental level, there is only one kind physical laws, and
these are the quantum principles—in this picture, classicality only emerges as their
consequence.

In any experiment, two phases can be distinguished: the preparation of the
system under study and the actual measurement. This situation can be idealized
in the following way. Two systems, the observed system and the observing system,
influence each other, and we observe for each preparation ! and each measure-
mentA one of several possible outcomes fai gi2I , ai 2 R, the possible measurement
results. In general, for given ! and A, the theory only determines a probability
distribution PA

! .ai /, i 2 I , for the individual outcomes, where PA
! .ai / � 0 andP

i2I P A
! .ai / D 1. If for a given ! and A there is always one unique (up to

experimental error) outcome when the same experiment is repeated, then we have
a deterministic theory; an example is classical mechanics. In contrast, classical
statistical mechanics and quantum mechanics are examples for theories which are
nondeterministic, or probabilistic.

Standard quantum mechanics is the only probabilistic theory where the proba-
bilities are postulated ab initio and are not a consequence of hidden deterministic
processes at a deeper level. Such processes are called hidden variables and reflect
the ignorance of the observer. However, the majority of physicists today believe
that the probabilities in quantum mechanics are not attributable to the ignorance of
hypothetical hidden variables, but are of a fundamentally different nature. This is
corroborated by Bell’s inequalities, which hold in any theory with (local) hidden
variables, and which were experimentally found to be violated.

If quantum theory is the fundamental principle of nature, the question arises
how the laws of classical physics, which in particular govern the objects of our
daily lives, follow from the more fundamental quantum laws. The most promising
answer to this question seems to be the one offered by the program of environmental
decoherence. Environmental decoherence contends that one has to take into account
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the fact that the objects of classical physics, and in particular macroscopic objects,
are strongly interacting with their environment, and that precisely this interaction is
the origin of classicality in the physical world. Thus classicality is a dynamically
emergent phenomenon due to the unavoidable interaction of quantum systems with
other quantum systems surrounding them.

Since decoherence is based on nothing else than the application of the standard
formalism of quantum physics to the description of the interaction between a system
and its environment, decoherence is neither an extraneous theory distinct from
quantum physics nor something that we would freely choose to include or neglect.
Decoherence is ubiquitous in nature and has to be taken into account to arrive at
a realistic description of a physical system. Moreover, decoherence is not to be
viewed as a disturbance of the system by its environment, on the contrary the system
disturbs the environment: the quantum coherence immanent in the system is not
lost but only delocalized in the environment. For recent reviews of the theory of
decoherence see [25, 28, 31].

In our work the aim was to obtain a rigorous definition of decoherence in a
general mathematical framework, which allows a classification of possible scenarios
of decoherence, and which is sufficiently general to accommodate also systems with
infinitely many degrees of freedom.

1.2 Algebraic Framework and Open Systems

Everybody agrees that concepts of classical and quantum physics are almost
diametrically opposed. Therefore, in order to discuss for instance the emergence of
classical behavior of quantum systems, we need a single mathematical framework
which allows a coherent description of the quantum and classical worlds. Just as
Newton invented calculus to describe classical mechanics, von Neumann invented
a splendid theory of algebras of operators to describe quantum theory. The
algebraic framework of quantum physics is an abstraction and generalization of von
Neumann’s formulation, which was pioneered by Segal, Haag, Kastler and Araki.
It is a mathematical model for states, observables and their dynamics, covering all
known physical applications and admitting a sufficiently rich structure to facilitate
rigorous developments.

1.2.1 Algebraic Framework

Given a specific preparation ! (state) of a physical system and a specific mea-
surement A (observable), the role of the (kinematical part of the) theory is to
predict a probability distribution PA

! .�/ on the set of all possible outcomes of the
measurement. The set of all observables generate an operator algebra N , which,
for mathematical convenience, is taken to be a C*-algebra or, when represented on
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a Hilbert space, as a von Neumann algebra. The observables then correspond to
the self-adjoint elements of N , whereas the states are the positive and normalized
linear functionals on N . The probability distribution PA

! .�/ is obtained by spectral
decomposition of a self-adjoint element A 2 N in the same way as in the standard
Hilbert space formulation of quantum mechanics. In this context, if N describes
a classical system, it is commutative, whereas an algebra with a trivial center
corresponds to a system with a pure quantum character.

1.2.2 Time Evolution

In modern physics the time evolution of physical systems is formulated using the
Hamiltonian approach, in which the dynamical law is described by a Hamiltonian
operator H . This assumption seems to be a very fundamental one and is valid
on all energy scales encountered today (see, e.g., [23]). In particular, in the
algebraic framework, the time evolution is given by a mapping on the algebra of
observables N into itself, and is formulated in the so-called Heisenberg picture:

x.t/ D eiHtxe�iHt for any x 2 N ; t 2 R; (1.1)

where x 2 N is an observable at time t D 0, and x.t/ the observable at time t .
A key issue in theoretical physics is to build the Hamiltonian H in an appropriate
way, and the basic criterion for its acceptability is its suitability for modeling
all phenomena of interest. To construct a Hamiltonian one first has to build its
domainD.H/. This task is essentially related to the choice of the underlying Hilbert
space H for the system. Let h�; �iH denote the scalar product of the Hilbert space H.
Then the Hamiltonian H is given as a linear self-adjoint operator on H which is
densely defined. When a Hamiltonian has been fixed, one can next decide which
von Neumann subalgebra N � B.H/ can be used to represent the set of observables
of the system, then the dynamics can be introduced by (1.1). The construction of
Hamiltonians in physics is one of the most difficult tasks, and is in many situations
an unsolved problem. Even the simplest models like the Hydrogen atom are far
away from being mathematically trivial. Moreover, the inclusion of a all physical
phenomena needed to describe the physical situation on hand makes the structure of
Hamiltonians complex, even at a formal level without any attempts of mathematical
rigor. A good example is the Hamiltonian of the electroweak interaction—a part
of the standard model considered today as a one of the main achievements of
theoretical physics [16]. Up to now there is still no mathematically rigorous theory
describing all the physics inherent in the standard model, despite the many efforts
directed towards this goal [11, 23].

This fact determines our attitude in the sequel, where we emphasize the analysis
of the general mathematical structure, avoiding discussions concerning particular
constructions of physical Hamiltonians for concrete interactions.
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There is some convenient mathematical abstraction of the idea associated
with (1.1), which can be stated in a purely algebraic way. The mapping N 3 x 7!
x.t/ 2 N , which is bijective for any fixed t , has some purely algebraic properties
that can be summarized easily:

a x.t/� D .x�/.t/ for any x 2 N , here � is the Hermitian conjugation in the
operator algebra B.H/,

b .xy/.t/ D x.t/y.t/ for any x; y 2 N ,

for any t 2 R. Any linear bijective mapping ˛ W N �! N obeying the algebraic
rules a and b is called a *-automorphism. The dynamics of the quantum system is
then described by a one-parameter group of *-automorphisms f˛t gt2R, called the
*-automorphic evolution, which in above terms in given by ˛t .x/ D x.t/. The
group law reads ˛tCs D ˛t ı ˛s for all t; s 2 R, and ı denotes the ordinary
composition of mappings. Some regularity property in the time variable t are usually
introduced. For instance, if the function t 7! h ; ˛t .x/'i is continuous for all
fixed vectors  ; ' 2 H and all x 2 N , we speak of weak continuity of the
one-parameter group f˛t gt2R. Note that an arbitrary *-automorphic evolution is
not of the form (1.1) for some Hamiltonian H , but can be more general. Finally,
we mention that a *-automorphic evolution is it completely positive, which is a
notion whose physical significance has been realized by Kraus, Lindblad, Gorini,
Kossakowski and Sudarshan [1]. This concept of positivity can be explained in terms
of physical requirements. Fix some instant t and consider the mapping defined by
N 3 x 7! ˛t .x/ D x.t/, where x.t/ is given by (1.1). Obviously, one obtains
that ˛t is a positive map on the algebra N , i.e., ˛t .x2/ � 0 for any element x 2 N
such that x� D x (this follows, e.g., from property a and b). Consider now our
system as a part of a bigger system by adding to our system another quantum system
described by a n-dimensional Hilbert space C

n, which has a trivial Hamiltonian
Hn D 0. The algebra of observables for the joint system is the von Neumann algebra
generated by all elements x ˝ A 2 B.H ˝ C

n/, with x 2 N and A 2 B.Cn/,
the algebra of all n � n-matrices with complex entries. We assume that the added
system is far away from our original system, so that the interaction between the
two systems is negligible. Let �n be the unit matrix. The total Hamiltonian of the
two noninteracting systems is then H ˝ �n, and the corresponding time evolution
is ˛nt D ˛t ˝ idn, with t 2 R, and where idn is the trivial automorphism acting on
the matrix algebra B.Cn/. Using the same argument as before we get ˛nt .x

2/ � 0

for any observable x D x� of the joint system. This positivity property holds
true for all positive integers n, and therefore the mapping ˛t is called a completely
positive map. Every *-automorphism is completely positive, but we emphasize that
not every positive linear map on a von Neumann algebra taking values in another
von Neumann algebra is completely positive. Below we give some examples of such
completely positive maps which are not arising from a *-automorphic evolution.
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1.2.3 Open Systems

We already alluded to the fact that our understanding of the physical world is very
limited and partial. A glimpse of this deficiency is present in the concept of an open
system. We shall see in the next section that this concept is of major relevance for our
understanding of appearance of classical physics in a world which, at a fundamental
level, is governed by the quantum laws. Hence we elaborate a bit on this subject. An
open system S is a physical system which is not (well) isolated from the influence
of its surroundings. This is a typical situation; in fact, a perfectly isolated system is
rather an exception since a perfect isolation can be achieved only approximately in
practice. We include the interaction of the system S with its environment E, which
can be thought of that part of the rest of the world which is in interaction with our
system S, in the mathematical description of S. To be more specific we assume that
the total Hamiltonian has the form

Htot D HS ˝ �E C �S ˝HE CHint;

where HS describes the time evolution of the perfectly isolated system, and
similarly HE corresponds to the environment alone. The term Hint describes the
interaction of the system and its environment. The total system S C E can be
considered as a perfectly isolated system, since it includes all interactions between
all of its parts. It is this assumption that allows us to use Hamiltonian dynamics for
the total system. Note that by assumption we do not perform any observation of the
environment, all measurements are entirely confined to the system S (if we want to
perform measurements on parts of E we would include those parts in S as well). In
particular, using (1.1) one can write for the observables of the system S

x.t/ D eiHtott .x ˝ �E/e�iHtott for any x ˝ �E 2 N ; t 2 R;

with N � M Ő ME, where M is the algebra of observables of the system S
and ME is the algebra of observables for the environment E. Here N is the smallest
von Neumann algebra containing M ˝ C�E and C�S ˝ ME.

In general, x.t/ 62 M ˝ C�E for t 6D 0. To mathematically describe the fact
that the experimental capabilities are confined to measurements on S alone we need
to find the resulting time evolution in M. To do this we consider some fixed initial
state !E of the environment and consider the linear mapping …!E W N �! M ˝
C�E Š M, determined uniquely by the condition

…!E.x ˝X/ D !E.X/x ˝ �E for all x 2 M; and X 2 ME:

Note that …!E is a norm-one projection since !E.�E/ D 1. The map …!E is called
a conditional expectation. We shall often write x as an abbreviation for x ˝ �E,
which will cause no confusion. The state !E is usually called a reference state.
The physical meaning is that the influence of the system S on the environment E is
negligible, so that the state of E is not changed by the presence of S in a significant
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way. A typical example is an environment in thermodynamical equilibrium, whose
temperature is unchanged after some exchange of energy due to the thermal contact
with some small system. We extend this assumption to quantum states and neglect
the influence on the environment due to its interaction with the system S (of course
this assumption must be justified on a physical basis). As a matter of fact, this is not
the only simplification that is usually made. The time evolution of the system S now
follows the law

x.t/ � St.x/ D …!E
�
eiHtott .x ˝ �E/e

�iHtott
�

for all x 2 M and t 2 R; (1.2)

and this is not a *-automorphic evolution any longer. Moreover, the family of
mappings fStgt�0 does not constitute a one-parameter group. The only properties
inherited by the St are complete positivity and contractivity, i.e., kSt .x/k 	 kxk
for all x 2 M, where k�k is the norm on M. The time evolution as given by (1.2)
has in general a complicated form and is difficult to study. Therefore, some further
simplifications are welcome. A simplification of great technical impact is achieved
when the dynamics (1.2) is approximately memory free, i.e., the family fStgt�0 can
be approximated by a semigroup fTtgt�0. A semigroup satisfies the memoryless
property Ts ı Tt D TtCs for all t; s � 0. There are some physical regimes in which
this kind of approximation can be justified rigorously. For a nice account of this
approximation technique we refer to the book [1]. We remark that a Markovian
approximation of the time evolution given by (1.2) is often unavoidable in order to
arrive at concrete results. Nevertheless, below we give some examples where the
dynamics fStgt�0 is given by a semigroup from the outset, without the need for any
approximations.

1.2.4 Summary

To sum up our discussion: we are interested in an open quantum system S. The time
evolution of such a system results from the interaction of S with its environment E,
and we focus on cases where the time evolution can be well approximated by
a Markovian dynamics, i.e., by a semigroup fTtgt�0 of completely positive and
contractive linear maps acting on the von Neumann algebra M representing the
observables of the system S. For our applications to decoherence, a central issue
is the long time behavior of such semigroups. In fact, we shall pay less attention
to short time behavior of the semigroup here, which is intimately connected to
regularity properties in the time parameter t and the notion of the infinitesimal
generator of the semigroup. We only mention weak* continuity as a natural notion of
continuity in the von Neumann algebra setting. Let M� be the dual space, consisting
of all norm-continuous linear forms on M. We consider the topology generated by
all seminorms

Pf�n;�ng.x/ D
1X

nD1
jhx�n; �niHj
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on M, where �n; �n 2 H for n D 1; 2; : : : such that
P1

nD1k�nkH � k�nkH < C1.
Here k�kH D ph�; �iH denotes the Hilbert space norm of H.

This topology is called the �-weak topology on M. Finally, we say that � is
normal if � 2 M� and if it is continuous in the �-weak topology; the space
of all normal linear functionals is denoted by M�. As a matter of fact the dual
space of M� is the algebra M, and the �-weak topology coalesces with the weak*
topology when M is considered as the Banach space dual of M�. Sometimes we
refer to M� as the predual space of M.

The Markov semigroup is weakly* continuous (or �-weakly continuous) if the
map t 7! �.Tt.x// is continuous for all fixed x 2 M and � 2 M�. This notion
of weak* continuity will be used in some constructions and in the examples below.
We also shall use occasionally the strong operator topology on M, which is given
by the family of seminorms x 7! kx'kH with ' 2 H.

1.3 Decoherence

In the following we recall the notion of decoherence which we have proposed in
the algebraic approach to quantum physics. It describes a physical process resulting
from the interaction of an open system with its environment. Let M be the algebra
of observables representing the kinematical degrees of freedom of the system. Due
to its openness the time evolution of the system follows an irreversible dynamical
law, given by a family of completely positive maps fTt gt�0 on the algebra M, i.e.,
M 3 x 7! Tt .x/ 2 M, where t � 0.

1.3.1 Definition of Decoherence

Definition 1 We say that decoherence takes place if the following decomposition
holds true: There exist two Banach subspaces M and N of M such that

M D M ˚ N;

where M is a von Neumann subalgebra of M. The restrictions Tt �M of the
maps Tt to M are given by a reversible time evolution associated to some group
of *-automorphisms fRtgt2R of the subalgebra M, i.e., Rt D Tt �M for all t � 0.
Moreover, we require that

lim
t!1�.Tt.x// D 0 for all � 2 M� and x 2 N: (1.3)

Let us make some comments concerning the physical content of this definition.
Due to decoherence, any observable x 2 N starts to be out of the range of any
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measurement device after some lapse of time (which is finite in practice), i.e.,

j�.Tt.x//j < " for any t > td;

uniformly for any x 2 N, where the bound " for the average values of the
observables is small enough to be considered as not relevant in all measurements.
The time td, which is found to be very short in all practical situations, is called the
decoherence time. It marks a time scale after which the reversible dynamics fRtgt2R
on the subalgebra M starts to be dominant in the system, and at the same
time it effectively describes the system. This phenomenon is modeled by the
requirement (1.3).

We call the algebra M the algebra of effective observables, and the dynam-
ics on M given by fRtgt2R the effective dynamics of the system [4, 17]. The
pair .M; fRt gt2R/ is called the effective dynamical system. We emphasize that
due to the process of decoherence a part of the kinematical degrees of freedom
represented by N are suppressed as a consequence of the interaction of the system
with its environment. Mathematically, this interaction is inherent in the family
of maps fTtgt�0. It is believed that the notion of a strong decoherence is more
appropriate physically. For strong decoherence one assumes that the convergence
in (1.3) is uniform for all observables from any set that is bounded in the operator
norm k�k.

Finally, note that it is sometimes convenient to replace condition (1.3) by the
weaker requirement

lim
t!1�.Tt.x// D 0 for all � 2 M� and x 2 N0 � N; (1.4)

where N0 is a subspace dense in N with respect to the �-weak topology (see below
for an example where N0 D N \ C, with C a C*-algebra).

1.3.2 Environment Induced Superselection Rules

If the family fTtgt�0 of operators admits predual operators T�t acting on M� for
any t � 0, then one can express decoherence in the language of dual objects, and in
particular in terms of states, as it is often done in the physics literature.

Indeed, historically the notion of decoherence has origin in this dual picture. If
one considers two states both represented by unit vectors ' and  from H, then one
can form their superposition,�� D . C�'/=k C�'kH, where � is some complex
number. The vector ��, in agreement with the superposition principle of quantum
mechanics, describes a new possible state of the system S. But in general there are
some very serious obstacles to accept this point of view in its full generality. One of
the basic example is provided by elementary particle physics, where no observation
of any superposition of states with different electrical charges or a superpositions
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of states with integer and half-integer spin have ever observed in laboratories. More
striking examples touching our everyday experience are obtained when one tries
to understand the behavior of macroscopic systems using principles of quantum
mechanics. The most famous example is the Gedanken experiment proposed by
Schrödinger in 1935 [26]. A cat is enclosed in a nontransparent box together with
a poisoning substance. A lethal portion of this substance is released when a Geiger
counter inside the box registers the radioactive decay of one atom. The quantum
mechanical description of this situation suggests that the cat is neither dead nor
alive, but that its state is given by a superposition of “dead” and “alive” states of the
cat until we open the box and check its condition. This grossly contradicts common
sense. Obviously, if one opens the box then one finds the cat either dead or alive
with some probability which is given by the laws of radioactive decay. This example
touches not only the measurement problem in quantum theory, in particular the wave
packet reduction postulate, but poses a fundamental question as well: Why does the
superposition rule, valid in the micro-world of particles, ceases to be valid in the
macro-world, which is made up from these microscopic particles?

The concept of superselection rules, originally introduced in the context of
elementary particle physics [27], is a natural and simple solution: Superpositions
of states not realizable in the physical world have to be excluded from the Hilbert
space H. This means, in particular, that the Hilbert space of physical states H, has
to be written as a direct sum of distinguished subspaces: H D H1 ˚ H2, where the
superposition rule is valid without any limitation exclusively within each coherent
subspace H1 and H2, but not between elements of H1 and H2. In that case the
algebra of observables N can no longer be equal to B.H/, as was first realized
by von Neumann. Indeed, assuming that the linear combinations �� with  2 H1

and ' 2 H2 have no physical meaning then the algebra of observables should not

make any distinction between the statistical mixture 1
1Cj�j2 P C j�j2

1Cj�j2 P' and the
state given by P�� , where P�� is the orthogonal projection onto the one-dimensional
subspace spanned by �� (the projections P and P' are defined in a similar way).
In other words,

h��; x��iH D 1

1C j�j2 h ; x iH C j�j2
1C j�j2 h'; x'iH for all x 2 N :

This means that the commutant N 0 contains orthogonal projectors Q1 and Q2

onto H1 and H2, respectively. Hence N 6D B.H/, since the commutant of B.H/
is trivial, i.e., B.H/0 D C�. The superselection rules can thus be introduced by
the so called superselection operators Q, which are given by all elements of the
commutant N 0 of the algebra N .

The addition of the postulate of superselection rules in quantum mechanics
poses new questions for physicists: how can one justify them? This question, on
a purely mathematical ground, partially overlaps with the question concerning
the phenomenon of wave packet reduction in the measurement theory, or more
generally, the question of a restriction of the superposition principle for macroscopic
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objects (i.e., the appearance of a classical world). Indeed, one wants to find a
physical mechanism resulting in the following condition:

h ; x'iH D 0 for all x 2 N ;

for all pairs states  and ' which cannot be superposed in the presence of
superselection rules, or for all pairs of states  and ' which are macroscopically
different, as in the case of measurement theory. The Hamiltonian dynamics has a
fundamental character, but evidently it cannot account for the above goal. Since
Hamiltonian evolution transforms each state � 2 H into another state in H, it cannot
transform a pure state into a statistical mixture. In other words, the orthogonal
projectionP� will evolve into another orthogonal projection under any Hamiltonian
evolution, but never into a mixture !P C .1 � !/P' , with ! 2 .0; 1/.

1.3.3 Zurek’s Description of a Quantum Measurement

In this section we briefly present Zurek’s idea of environment induced superselec-
tion rules, which was proposed in [29, 30] and further developed in [12, 21]. The
starting point is the von Neumann scheme [26] of a measurement device A which
measures an observable S D P

s sjsihsj of a system S, which is initially prepared in
the state j 0i D P

s csjsi. Von Neumann’s formulation of the measurement process
can be divided into two phases. The first phase—often called the premeasurement—
consists of forming quantum correlations between the measurement device A and
the system S that is being measured, i.e.,

j 0i ˝ jA0i D
X

s

cs jsi ˝ jA0i HHHHHH)
HintWS$A

X

s

cs jsi ˝ jAsi:

Note that initially there are no correlations between A and S. The second phase is
often called the wave packet reduction and is connected to the transition from the
superposition of states to a statistical mixture, which is also called the decoherence
process. In symbols,

X

s

csjsi ˝ jAsi H)
X

s

jcs j2 � jsihsj ˝ jAsihAsj:

This transition cannot be realized by a Hamiltonian time evolution. Here the
initial state j 0i of S has been destroyed. Note that the coefficients cs have not
been changed in the decoherence process, which means that certain information
concerning the initial state j 0i of the system S has been transported to the
measuring device without any losses (we are considering an ideal measurement
process).
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Now Zurek argued that this scheme cannot be completely realistic since, in
accordance with quantum theory, the state produced in the premeasurement can
be represented by a superposition of eigenstates jri of another observable R DP

r r jrihr j as well, which need not commute with the original observable S in
general. As a particular consequence, this would mean that the measurement device
itself would have contained the whole information about two non-commuting phys-
ical quantities at the same time. But as a consequence of their non-commutativity,
they are subject to the Heisenberg uncertainty principle and hence cannot be
determined simultaneously with arbitrarily high accuracy. Moreover, one could
not say that the device A is related to a particular physical quantity in an unique
way, contradicting our experience with real measurement devices in real laboratory
situations. As a conclusion, if we believe that the device A obeys the quantum
laws after the premeasurement process, we must contend that we still do not fully
understand the wave packet reduction process. Zurek himself wrote:

. . . quantum mechanics alone, when applied to an isolated, composite object consisting of
apparatus and a system, cannot in principle determine which observable has been measured.

The solution proposed by Zurek bridges the gap described above and removes
the loopholes in our understanding of the premeasurement process, and at the
same time it indicates the mechanism of the wave packet reduction process. In
Zurek’s proposal, the measurement device consists not only of the part A, but it
is a composite system A0 D A C E, where the part E is called by convention
the environment of the device A. It seems to be natural that the measuring device
consists of one part which has direct contact with the system S on which the
measurement is performed. This part of the measurement device directly collects
the information about the state j 0i of S. It is identified in Zurek’s scheme with
the quantum subsystem A of the total system A0. The second part E decides which
part of the information transferred by the interaction between S and A is actually
displayed by the measurement apparatus A0, i.e., which observable it actually
measures. Note that we consider the part E to interact only with A, but it does not
influence the measured system S. Moreover, the part E is entirely ignored during the
whole process of measurement. Mathematically, this corresponds to computing a
partial average with respect to the ignored state of E. This averaging leads to a non-
Schrödinger type dynamics in the state space of A, or equivalently, to an irreversible
dynamics on the corresponding algebra of observables. This resulting dynamics
is typically complicated, but at the same time it leaves room for the dynamical
appearance of the phenomenon of wave packet reduction.

Summing up our discussion: On physical grounds we have argued that one has
to take into account the essential openness of systems in order to understand the
decoherence process. The main idea presented above is based on the pragmatic
assumption that only partial information about the dynamics of the total system AC
E is available in practice, which is given by averaging over the degrees of freedom
of E. Due to ignoring E the renouncement of the genuine *-automorphic dynamics
is unavoidable.
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1.4 Some General Results About Decoherence

Having clarified the basic mathematical notion of decoherence and having dis-
cussed its physical interpretation we are now ready to develop some mathematical
consequences of the point of view we have chosen. We first state some theorems
(without giving them in the most general form that is possible, instead we refer to
the cited literature). After that, in the following section, we shall give some typical
examples which give the flavor of the theory; however, they do not exhaust all
known models to date (we have always chosen the simplest mathematical version
and have avoided obvious generalizations). However, we keep our considerations
mathematically rigorous. The price to pay for mathematical rigor is the loss of a
complete connection to exact physical realizations as is met in the laboratory. We
hope to be able to fill this gap in the future by a further development of the models.
Nevertheless, the discussion below presents the main line of our idea in full detail.

It is clear that different scenarios for the algebra M and the dynamics fRtgt�0
are possible, including the case in which the dynamics fRt gt�0 is trivial—this is
a typical situation if the algebra M is isomorphic to a discrete one, e.g., M D
`1, the space of all bounded sequences of complex numbers, which becomes a
von Neumann algebra when multiplication is defined by fangfbng D fanbng and
involution by fang� D fNang. This situation is described by the Theorem 1 below
(see also [20]).

Let T .H/ 
 B.H/ be the set of all linear operators of trace class, and
let TC.H/ 
 T .H/ the set of all non-negative operators. Moreover, TC;1.H/ 

TC.H/ denotes the set of all non-negative elements with trace equal to one. This set
is identified with the set of all states of the system. For the proof of the next theorem,
recall that T .H/� D B.H/. We assume that we are given a semigroup fTtgt�0
of superoperators Tt W B.H/ �! B.H/, for all t � 0, which describes the
time evolution of an open system in the Markovian approximation—refer to our
discussion in Sect. 1.2.3 for details. We assume that fTtgt�0 satisfies the following
properties:

a1 For each t � 0 we have Tt .�/ 	 �.
a2 For each t � 0 there exists the map Tt� W T .H/ �! T .H/, the predual

operator of Tt .
a3 For each t � 0 the map Tt is two-positive.
a4 For each t � 0 the map Tt is contractive in the operator norm k�k1 on B.H/,

and Tt �T .H/ is contractive in the trace norm k�k1, defined on the trace class
operators T .H/.

We assumed that the initial algebra of observablesM is given by the full operator
algebra B.H/, i.e., it is a factor of type I. This assumption is natural in the sense
that we want to consider a system with a “maximal” quantum character, without
any superselection rules, in which the whole Hilbert space H constitutes the set of
physically realizable states. In this situation we want to investigate the appearance
of possible superselection sectors due to decoherence. We assume two-positivity
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instead of the more physical assumption of complete positivity since it turns
out that two-positivity is enough for our purposes. In particular, this positivity
condition together with the conservation condition Tt.�/ D � guarantees that the
density matrices � 2 TC;1.H/ are transformed into density matrices Tt�.�/ by the
mappings Tt�. This allows us to consider the dynamics in the state space in a natural
way.

Theorem 1 Let fTtgt�0 be a weak* continuous semigroup on B.H/ satisfying the
above properties a1–a4. Then there exist linear subspaces M andN of B.H/ having
the properties described in Definition 1, together with the condition (1.4). If M
contains the unit �, then it is additionally a von Neumann algebra which can be
decomposed into a direct sum of factors Mk , k D 0; 1; 2; : : :, i.e.,

M D
M

k

Mk; (1.5)

where each factor Mk is of type I. Moreover, the effective evolution fRtgt2R is given
by a unitary evolution

Rt.x/ D eitHxe�itH for all x 2 M;

where H is a self-adjoint operator.

Sketch of Proof Let HS.H/ 
 B.H/ denote the set of Hilbert–Schmidt operators,
which can be considered as a Hilbert space with inner product hx; yi2 D tr x�y,
and define a subspace of HS.H/ by

K D fx 2 HS.H/ W kTt�.x/k2 D kTt .x/k2 D kxk2 for all t � 0g; (1.6)

where k�k2 denotes the Hilbert–Schmidt norm, which is defined by kxk2 Dp
tr.x�x/. We assume that K is nontrivial, i.e., K ¤ f0g. As a matter of fact, the

map Tt , when restricted to HS.H/, can be considered as the Hilbert space adjoint
of Tt� acting on HS.H/, i.e. the extension of Tt�, which is denoted in (1.6) again
by Tt� and is given by the restriction of the dual operator Tt �T .H/� to HS.H/. The
space K is invariant under the action of both Tt� and its adjoint operator. The same
holds true for the orthogonal complement HS.H/ � K. The actions of Tt� and Tt
are isometric on K and suppressing on HS.H/�K, i.e., limt!1 tr.'Tt .x// D 0 for
all x 2 HS.H/�K and all ' 2 HS.H/. Let P be the orthogonal projection onto the
subspace K. One can show that trP.'/ 	 tr' for all ' 2 TC.H/. In particular, P
transforms T .H/ into T .H/. Hence, one can consider the restriction P �T .H/,
which induces a decomposition of the space T .H/ into the isometric (iso) and
suppressing (s) parts

T .H/ D T .H/iso ˚ T .H/s;
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where T .H/iso D P.T .H// D K \ T .H/, and T .H/s D .id �P/.T .H//.
Finally, one defines the algebra M as the dual space of T .H/iso. Let E be equal to
.P �T .H/ /

�, i.e., the dual operator of P when considered as an operator in T .H/.
Then M D E.B.H// and N D .id �E/B.H/. For any compact operator x from N
one has the suppression property, limt!1 tr.'Tt.x// D 0 for all ' 2 T .H/. This
can be easily seen if one notes that HS.H/ is a dense subset of the set of all compact
operators in the operator norm topology of B.H/.

The decomposition of the algebra M in (1.5) is described in detail in [20].
Having established this decomposition, we note that the dynamics should preserve
each subalgebra Mk and hence cannot generate “transitions” between different
sectors Mk . Hence we need to analyze the restriction T .k/ � Tt �Mk

, which
is a *-automorphic evolution. A closer analysis shows that K is generated by
orthogonal projections (denote the collection of all of them by P.K/), which are
finite-dimensional since K is a subset of the space of Hilbert–Schmidt operators.
Moreover, Tt� and Tt , as operators on K, transform orthogonal projectors into
orthogonal projectors of the same finite dimension, and they are evidently bijective
mappings when restricted to P.K/, as Tt�.Tt .e// D e for all e 2 P.K/. They
satisfy the multiplication rule, i.e., Tt.ee0/ D Tt.e/Tt.e0/ for all e; e0 2 P.K/. The
operator Tt is normal, and P.K/ generates M, hence each Tt is a *-automorphism
of M. The same conclusion holds for each T .k/t . Now, as M is a factor of type I, it
is spatially isomorphic to B.Hk/, where Hk is some Hilbert space. Let 	 W Mk �!
B.Hk/ denote this isomorphism. Finally, each *-automorphism of B.Hk/ is inner,
so we conclude that 	 ı T .k/t .�/ ı 	�1 D V

.k/
t .�/V .k/�

t for some unitary operator Vt
in Hk . The family fV .k/

t gt2R, with V .k/
�t D V

.k/�
t for t � 0, is a strongly continuous

one-parameter group of unitary operators in Hk . ut
Note that when fTt�gt�0 is relatively compact in the strong operator topology one
obtains strong decoherence. We shall not dwell on all the different cases covered by
this theorem as it is more adapted for the discussion of superselection rules (which
are not our central issue here) and the measurement process if M ' `1, giving a
set of discrete outputs.1

To address situations with nontrivial continuous effective dynamics fRtgt2R on
an abelian algebra M we need to go beyond the realm of type I von Neumann
algebras. Theorem 2 below covers the cases of type II von Neumann algebras, but
it can be stated in a more general form which applies to type III von Neumann
algebras as well (we invite interested readers to consult [18]). Let us first introduce
some notation. Let 
 a be semifinite faithful and normal trace on the factor M. One
defines the set M
 
 M by

M
 D linfx 2 MC W 
.x/ < C1g:

1We do not consider random dynamics on `1 given by some continuous Markov chain.
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We make similar assumptions as in the case of Theorem 1:

A1 For each t � 0 we have Tt .�/ 	 �.
A2 For each t � 0 there exists Tt� W M� �! M�, i.e., the predual operator

of Tt .
A3 For each t � 0 the mapping Tt is two-positive.
A4 For each t � 0 the mapping Tt is contractive in the operator norm k�k1

on M, and Tt �M
 is contractive in the trace norm k�k1 defined on the trace class
operatorsM
 .

Theorem 2 Let fTtgt�0 be a weak* continuous semigroup on M satisfying the
above properties A1–A4. Then there exist Tt -invariant linear subspaces M and N
such that the decomposition M D M ˚ N holds. Both M and N are weak* closed
and invariant under the involution in M. Moreover, M is a subalgebra of M. If
� 2 M then M is a von Neumann algebra. Moreover, Tt �M gives rise to the
*-automorphic evolution fRtgt2R. We also have

lim
t!1'.Tt .x// D 0 for all ' 2 M� and x 2 N \ C; (1.7)

where C is a C*-algebra which is weak* dense in M. If fTt�gt�0 is relatively
compact in the strong operator topology then we get strong decoherence. Finally, if
the trace 
 is finite on M then the condition (1.7) is satisfied with C D M.

To further simplify our discussion we formulate our next Theorem 3 only for the
case of a finite von Neumann algebra of type II1. We consider a normalized trace
on M, i.e., 
.�/ D 1. First note that in this case any von Neumann subalgebra M
of M can be considered as a result of some decoherence process induced by a
semigroup fTtgt�0 of operators satisfying the above conditions A1–A4. We are
particularly interested in the case in which M is a maximal abelian subalgebra
in M. In this case one can describe the effective dynamics fRt gt2R in a canonical
way. Indeed, by the Riesz representation theorem M ' L1.Œ0; 1�; ˇ; dx/ � L1,
where ˇ is the Borel �-algebra of Œ0; 1� and dx is the normalized Lebesgue measure.
To simplify the notation we identify both algebras M and L1. According to
Theorem 2, Rt is a *-automorphism of L1 preserving the trace 
 , i.e., one gets

Z 1

0

.Rt .f //.x/ dx D
Z 1

0

f .x/ dx for all f 2 L1:

Using classical theorems about Lebesgue spaces the existence of bijective map-
pings ˆt can be established, which have the property that both ˆt and ˆ�1t
are measurable and invariant under the Lebesgue measure, and which are related
to Rt by

Rt.�A/ D �ˆ�1
t .A/ for all A 2 ˇ;
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where �A denotes the characteristic function of the Borel set A. Using the group law
of fRtgt2R and the above relation one gets ˆt ı ˆr D ˆtCr for all t; r 2 R. Hence
we have obtained a measurable flow fˆt gt2R. We can now formulate the next result.

Theorem 3 Let M be a factor of type II1 with a normalized trace 
 . If the
effective algebra M is a maximal abelian subalgebra of M then the effective
dynamics fRtgt2R can be viewed as a classical dynamics on the phase space Œ0; 1�
which is given by a measurable flow ˆt W Œ0; 1� �! Œ0; 1� for t 2 R, where
Rt.x/ D ˆt;�.x/ for all x 2 M, with .ˆt;�.x//.!/ D x.ˆt .!// a. e. with respect
to Lebesgue measure on Œ0; 1�.

1.5 Examples

Let us now present some examples. We focus our attention on cases with nontrivial
effective dynamics as they seem to be most interesting. First, we consider an
example with a factor of type II1. Then we move on to examples of infinite von
Neumann algebras.

1.5.1 Newtonian Motion on the Circle

One of the simplest C*-algebras describing infinite systems is the Glimm algebra,
which we now introduce. Consider the set of all complex matrices with 2n rows and
columns (n D 0; 1; 2; : : :). We shall denote this set by An. One then defines the
involution �n on An as the Hermitian conjugation of matrices. The norm kxkn of an
element x 2 An is defined as the square root of the biggest eigenvalue of the matrix
x�nx. Notice that An is the algebra of observables for the spin degrees of freedom
of a set of n spin- 1

2
particles (the Planck constant „ is set to 1). For n < m each

C*-algebra An is *-isometrically included in the C*-algebra Am, i.e., kxkn D kxkm
and x�n D x�m , where the element x 2 An is identified with its image in Am. This
inclusion can be easily constructed. For the sake of simplicity let us takem D nC1.
Then the matrices of the algebra AnC1, which are built from diagonal blocks of

size 2 � 2 of the form

�
� 0

0 �

�

, can be identified with elements of the algebra An in

a natural way. Using this inclusion An ,! AnC1 it is intuitively clear that one gets
a normed *-algebra

S1
nD0An. This algebra can be next completed with respect to

the norm k�k, where k�k �AnD k�kn. The resulting C*-algebra is called the Glimm
algebra. This construction can be stated in a more precise fashion if one uses the
concept of inductive limit [14], which we do not introduce here. The Glimm algebra
describes the spin degrees of freedom of an infinite system of spin- 1

2
particles.
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Consider the factor generated by the Glimm algebra A in its trace representation
via the GNS construction, i.e., M D �!0.A/00. We shall consider the dynamics
on M given by

d

dt
x D ı.x/C L0.x/ D iŒH; x�C L0.x/;

where ı generates a weak* continuous one-parameter group of *-automorphisms of
the algebra M, and L0 is the dissipative part of the dynamics, which is responsible
for the suppression of certain observables due to decoherence. These two ingredients
are chosen as follows:

Step 1: Let Dn be the algebra of diagonal 2n � 2n-matrices and let Un be the set
of all unitary matrices U of size 2n�2n which preserve the diagonal algebraDn.
Let U. 1

2n
/ be the element of the group Un which is defined as

U
� 1

2n

��
diag.d11; d22; : : :/U

� 1

2n

�
D diag.d2n2n ; d11; d22; : : :/;

where diag.d11; d22; : : :/ denotes the diagonal matrix with entries d11; d22; : : : on
the diagonal. Since there is a natural homomorphic inclusion of the groups Un 

UnC1, one can consider the set

SC1
nD0 Un, which is an abelian group isomorphic

to the group of dyadic numbers D of the interval Œ0; 1� with addition modulo 1,

D D
n k

2n
W k D 0; 1; 2 : : : ; 2n � 1; and n D 1; 2; : : :

o
:

This isomorphism is given as follows: to each dyadic number d D k
2n

we attach
a unitary operator U.d/ D U. 1

2n
/k . Now we can give the representation of the

group D of dyadic numbers as a subgroup of the group of inner *-automorphisms
of the algebra M, i.e.

D 3 d 7! ˛.d/ 2 AutM;

where ˛.d/x � U.d/�xU.d/ for any x 2 M. The following result has
been shown in [17]: There is a weak* continuous group homomorphism ˛ W
R 3 t 7! AutM such that ˛.m/ D idM for any integer m 2 Z, and for
all dyadic numbers d 2 D we have ˛.d/ D U.d/� � U.d/. Moreover, any
*-automorphism ˛.t/ is spatial, i.e., ˛.t/ D U.t/� � U.t/ for some strongly
continuous group fU.t/gt2R of unitary operators in the Hilbert space H!0 , the
space on which the representation �!0 acts. In particular, we can represent the
generator ı of the group f˛tgt2R in the form ı.�/ D iŒH; ��, where H is a
self-adjoint operator in the Hilbert space H!0 , which, in turn, generates the
group fU.t/gt2R.
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Step 2: Let D 
 A be the Banach algebra generated by the infinite matrices of the

form �3k D �˝� � �˝�˝� 3˝�˝� � � , with � D
�
1 0

0 1

�

and with the Pauli matrix

� 3 D
�
1 0

0 �1
�

, which appears in the k-th position of the above tensor product.

The algebra D is a maximal abelian subalgebra algebra (m. a. s. a.). Moreover, D
is *-isomorphic to the algebra C.C/ of all continuous complex valued functions
on the Cantor set C.

Step 3: We consider a system similar to the one considered by Bell [3] in his
discussion of the wave packet reduction.2 So we have a single particle which
plays the role of the environment for our spin system. The particle moves past
the spins, interacts with them and thereby induces changes in the spin system. In
the laboratory one observes only the macroscopical behavior of the measurement
device, forgetting about the small particle whose presence can be registered only
indirectly by a measuring device. In our example the measurement device is
represented by the spin system, and the particle is a part of its environment. We
“forget” about the particle by looking only at the degrees of freedom of the spin
system. The state space of the particle is the Hilbert space HE D L2.R; dm/,
where dm is again the Lebesgue measure on the real line R. Its kinematical
degrees of freedom are described by the algebra of all bounded operators on HE,
i.e., ME D B.HE/. The algebra of the joint system is given by the von Neumann
algebra M ˝ ME which acts on the Hilbert space H!0 ˝ HE. The interaction
Hamiltonian is taken to be

Hint D �!0

 C1X

kD1

1

2k
� 3k

!

˝ Op; (1.8)

where Op is the momentum operator of the particle in HE. The reduced dynamics
is obtained by

T 0t .x/ D …!E.eitHintx ˝ �Ee�itHint/;

where …!E W M ˝ ME �! M is the conditional expectation with respect to the
reference state !E D j ih j, where the vector j i is given by

 .x/ D 1p
2�

Z

R

eipx

p
�.1C p/

dm.p/; (1.9)

and where …!E.x ˝A/ D !E.A/.x ˝ �E/ � !E.A/x.

2Bell worked within the Hamiltonian formulation and without averaging over the degrees of
freedom of the environment.
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The following fact has been proved in [17]: The family of maps fT 0t gt�0 is
a semigroup on M which satisfies the above properties A1–A4. Moreover, the
generator L0 of this semigroup is a bounded operator on M. It follows that we
have a well defined generator ı C L0, and we denote the corresponding semigroup
by fTtgt�0. Then the following theorem [17] can be established.

Theorem 4 The von Neumann subalgebra M of effective observables is *-iso-
morphic to the algebra �!0.D/ D L1.C; d/. Moreover, the group fRtgt2R
of *-automorphisms is isomorphic to the group of *-automorphisms of the alge-
bra L1.S1; dm/ generated by the smooth flow ˆt W S1 �! S1 (t 2 R), which
describes the uniform motion of a particle along a unit circle S1. More precisely,
for x 2 L1.S1; dm/ one gets x 7! xt with xt .˛/ D x.˛ OC2�t/ for ˛ 2 Œ0; 1/,
where OC denotes addition modulo 2� .

1.5.2 Newtonian Motion in Euclidean Space

In this example we show that a similar construction can be carried through for the
case of the classical system with a non-compact configuration space. Let G D D �
D�D be Cartesian product of the groupD of dyadic numbers on the real line R. Let
H D L

G L
2.R3; dm/, where dm is the Lebesgue measure on R

3, which we take as
the Hilbert space describing the system dynamics, which will be defined below. The
groupG acts on the algebra L1 � L1.R3; dm/ by ˛g.f /.r/ D f .r C g/ for any
r 2 R

3. This action is free and ergodic [14]. The kinematical degrees of freedom
are described by the von Neumann algebra M D L1˝˛ G, where ˝˛ denotes the
crossed product [14]. The application of the crossed product to physical problems
was pioneered by Landsman in [15]. He used it to obtain a quantization procedure
of classical systems. We will use the crossed product in the opposite direction since
our result can be regarded as a “dequantization”, i.e., we start from a system with
quantum character and then arrive at a classical one.

The algebra M is a factor of type II1. We define a faithful normal semifinite
trace 
 W MC �! Œ0;C1� by 
.x/ D R

x.0; 0/ dm. Let �˛ be the canonical
normal *-isomorphism of the algebra L1 into M. Then �˛.L1/ is a commutative
subalgebra of the von Neumann algebra M. The environment is described by
the Hilbert space HE D L2.R3; dm/ and by the algebra B.HE/ of all bounded
operators on HE. The algebra of the total system is then given by the von Neumann
algebra M ˝ B.HE), acting on H ˝ HE. In the following theorem the total
Hamiltonian of the system and its environment is constructed. For a proof refer
to [18].

Theorem 5 The total Hamiltonian of the total system is given by the following
essentially self-adjoint operator

HSE D �v � OP ˝ �E C 1

2
� ˝ Op � Op C

3X

kD1
ck�˛. Oxk/˝ Opk;



1 Theory of the Decoherence Effect in Finite and Infinite Open Quantum. . . 21

where ck > 0 with k D 1; 2; 3, v D .v1; v2; v3/ 2 R
3, Ox D . Ox1; Ox2; Ox3/ is the

position operator and Op D . Op1; Op2; Op3/ is the momentum operator in L2.R3; dm/.
Moreover, OP D . OP1; OP2; OP3/, OPk D L

G Opk and �˛. Oxk/ D R
��˛.dEk.�//, where

dEk is the spectral measure of the operator Oxk . The domain of H is given by

D.H/ D
n Q� 2 H ˝ HE W Q�.g/ 2 S.R3 � R

3/; Q�.g/ D 0 for a. a. g 2 G
o
;

where S is the space of Schwartz test functions vanishing at infinity together with
all their derivatives faster than any polynomial.

We choose the state of the environment as !E D j ih j, where the vector  2
L2.R3; dm/ is defined by  .r/ D Q

k  0.rk/, and where  0 is determined by the
Fourier transform of (1.9). The reduced dynamics of the system is given by

Tt .x/ D …!E.eiHSEx ˝ �Ee�iHSE/ (1.10)

for all x 2 M, which, in fact, is a semigroup [18]. Then the following theorem [18]
can be proved.

Theorem 6 The algebra of effective observables induced by the semigroup (1.10)
has the form M D �˛.L

1/, and for all � 2 M� and x 2 N one gets �.Tt .x// ! 0

when t ! 1. Moreover, .M; Rt / ' .L1; ˆt /. Consequently, the effective
dynamics {Rt gt2R leads to the flow ˆ on R

3 which is given by

ˆt.r/ D r C tv; for all r 2 R
3:

This flow describes a uniform motion on the Euclidean space R3.

With this example we finish the review of basic models leading to an effective
dynamical system which has a structure as in classical mechanics.

1.5.3 Spin System Coupled to a Phonon Bath

The previous two examples show that in the algebraic framework it is possible to
arrive at a consistent description of classical aspects by decoherence in a very natural
way, including Newtonian dynamics, starting from the rules of quantum mechanics.

The next model shows that it is possible to obtain an effective dynamical
system .M; Rt / having again a pure quantum character [6]. To this end we consider
the same spin algebra M D �!0.A/00 as above, where A is the Glimm algebra. This
spin system is now coupled to the free phonon bath of a one dimensional harmonic
crystal at nonzero temperature T (we write ˇ D 1

kT
for the inverse temperature,

with k the Boltzmann constant [10]). The Hilbert space of a spin-zero phonon is the
space Hf D L2.R; dm/. The Hilbert space describing the whole crystal is given by
F ˝ F , where F is the boson Fock space over the single particle space Hf [22].
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The phonon quantum field � is given by the formula �.f / D 1p
2
.a.f /C a�.f //,

with f 2 Hf. Here a.f / and a�.f / are the annihilation and creation operators in
the Araki–Woods representation [2], which are given by

a.f / D aF
�
.1C �/

1
2 f
	˝ �C �˝ a�F

�
�
1
2 Nf 	

a�.f / D a�F
�
.1C �/

1
2 f
	˝ � C � ˝ aF

�
�
1
2 Nf 	

and where aF, a�F are annihilation and creation operators in Fock space [22] (at zero
temperature). Let � be the Planck distribution

�.k/ D 1

eˇ!.k/ � 1
with dispersion relation !.k/ D jkj. The Hamiltonian describing the system of
noninteracting phonons is given by HE D H0 ˝ � C � ˝ H0 with H0 DR
!.k/a�F .k/aF.k/ dk. The representation of the CCR algebra (cf. also Sect. 1.5.4)

corresponds to the state !E given by

!E.a
�.f /a.g// D

Z

�.k/ Ng.k/f .k/ dk:

The state !E is the reference state of the environment which we will use below to
determine the dynamics of the spin system. The dynamics of the total system is now
given by the Hamiltonian

H D �!0.H
0
S /˝ �E C �S ˝HE C �

1X

lD1
�.�1l /˝ �.fl/;

where H0
S D P1

kD1 hl�3l . The matrix �1l is the Pauli matrix

�
0 1

1 0

�

corresponding

to the l-th spin of the lattice. For the sake of simplicity we consider the coupling
of the spin system with only a single mode of the phonon field, i.e., fn D ang,
where an is a sequence such that an � P1

lDnC1 al for n D 1; 2; : : :, for instance
we can take an � 1

2n
. Under some technical conditions concerning the field mode g

(the interested reader is referred to [5, 6]) one can derive the following dynamics of
the spin system, making use of a singular coupling limit [1]: The reduced dynamics
on M is approximated by a semigroup fTtgt�0 with generator

L.x/ D iŒ�!0.H
0
S /C b�!0.A/

2; x�C �a�!0.A/x�!0.A/� �a

2
f�!0.A/2; xg;

i.e. Tt D etL, where A D P1
lD1 al�1l , and where the constants a > 0 and

b 2 R depend on the environment parameters. The bracket f�; �g above denotes
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the anti-commutator. Below we present some long-time analysis of the semigroup
generated by this operator. Note that the standard approach [9] based on the analysis
of some prelimit expressions for the generator restricted to local algebras generated
by An cannot be used here as the local algebras are not preserved by the generator
(infinite tails involving all local algebras are present). Some global analysis is
therefore welcome at the beginning.

First, we observe that the algebra of effective observables M can be represented
in a purely algebraic way by

M D
1\

lD0
ker.LD ı ılHS

/; (1.11)

where ıHS.�/ D iŒHS; ��, with the effective Hamiltonian of the system HS D
�!0.H

0
S / C b�!0.A/

2. Here LD is the dissipative part LD D L � ıHS . Keeping
in mind this remark we can establish the following theorem.

Theorem 7 Let the sequences fhlglD1;2;::: and falglD1;2;::: with values in the
interval .0;C1/ be chosen such that the following conditions are satisfied:

hm �
1X

lDmC1
hl and am �

1X

lDmC1
al for any m D 1; 2; : : : :

Then M D C�, i.e., the system is ergodic.

We sketch the proof of this theorem in the Appendix.
Thus we have discussed in detail the ergodic property of the spin system. More

generally, the coupling of the spin system with the harmonic crystal can be chosen in
a specific way to generate a nontrivial effective algebra M with a nontrivial effective
dynamics fRt gt2R. This can be done quite intuitively, e.g., just by excluding some
(not necessarily finite) set of spins from the interaction. This procedure leads to
a quite interesting variety of examples. But here we restrict ourselves only to the
simplest case, i.e., we put a1 D 0 and thereby exclude just one spin from the
interaction. In this case the following theorem can be proven.3

Theorem 8 Suppose that the assumptions of Theorem 5 are satisfied, except that
we now put a1 D 0. Then M Š A1. Moreover, the effective dynamics fRtgt2R is
given by

Rt.x/ D U �t xUt for every x 2 A1;

where Ut D e�ith1�3 , i.e., the unitary Schrödinger evolution.

3We recall that the algebra A1 is the algebra of all complex 2� 2-matrices.
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To save space we do not provide the proof here, instead we refer the interested reader
to [6].

1.5.4 Dissipative Quantum Dynamical Systems

The construction of semigroups for the evolution of physically interesting open
systems is one of the most outstanding problems to be solved. Therefore, this
section is devoted to some constructions of semigroups [8] which can be used
to obtain decoherence-induced effective dynamical systems [7]. Here we provide
some introduction to the subject by studying a simple toy model. Consider the
standard Schrödinger representation of the canonical commutation relations (CCR)
in L2.R; dm/, where dm is the Lebesgue measure on the real line R. They can be
described by the position and momentum operators Oq and Op acting on the Hilbert
space L2.R; dm/. The domain of Oq and Op can be chosen in the standard way, but
we consider them on a core which is most convenient for our purpose, namely the
Schwartz space S.R/ of smooth complex valued functions decreasing at infinity
together with all their derivatives faster than any polynomial. Let  0 denote the
derivative of  with respect to q. The position and momentum operators are defined
by . Oq /.q/ D q .q/ and . Op /.q/ D �i 0.q/, respectively, for all q 2 R and
 2 S.R/. Then Œ Oq; Op� � Oq Op� Op Oq D i� on S.R/ (in appropriate units with „ D 1).
We consider the symplectic form � on R

2 given by �.�; �/ D �C�� � ���C, where
we write � D .�C; ��/ 2 R

2. Let ƒC� D .�C; 0/ and ƒ�� D .0; ��/. In the
symplectic space .R2; �/ one can introduce a complex structure J W R

2 �! R
2

by J.�C; ��/ D .���; �C/. Any element � can be expressed as .�C; ��/ D
�C.1; 0/C��J.1; 0/. By noting that J 2 D � idR2 the spaceR2 can be regarded as the
complex plane C using the identification .�C; ��/ � �CC i��. The symplectic form
can then be written as �.�; �/ D Im. N��/, the bar denoting complex conjugation.
Having the complex structure available one can introduce the Euclidean bilinear
form s.�; �/ D �.�; J�/ for all �; � 2 R

2. Recall that a linear map S W R2 �! R
2 is

called symplectic if �.S�; S�/ D �.�; �/ for all �; � 2 R
2.

We consider the field operator ' in the “zero-dimensional” space, i.e., a linear
operator-valued function R

2 3 � 7! '.�/. It is defined by the relations '.1; 0/ D Oq
and '.0; 1/ D Op. The commutation relation for the field operator reads

Œ'.�/; '.�/� D i�.�; �/ for all �; � 2 R
2;

which in turn can be represented by the unitary Weyl operatorsW.�/ D ei'.�/, since
the operators '.�/ are essentially self-adjoint on S.R/. Using the Weyl operators
the commutation relation can be expressed as

W.�/W.�/ D e�i�.�;�/W.�/W.�/ for all �; � 2 R
2: (1.12)
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Finally, the Weyl algebra is defined as the C*-subalgebra of B.L2.R2; dm// that is
generated by all Weyl operatorsW.�/, � 2 R

2. We shall denote it by W .
The simplest way to introduce a *-automorphic dynamics on W is by using a

symplectic mapping S W R2 �! R
2 and the characters � of the group R

2 [19]. Let
us introduce the notion of a dynamical character f�tg2R with respect to a generator ı
of some one-parameter group of symplectic transformations: Each �t is a character
of the group R

2, and additionally we require them to satisfy the relation

�t .�/�
 .etı�/ D �tC
 .�/ for all t; 
 2 R and � 2 R
2: (1.13)

Then a family of *-automorphisms ˛t W W �! W can be uniquely defined by the
formula

˛t .W.�// D �t .x/W.etı�/ for all � 2 R
2:

It is easy to show that the family f˛t gt2R is a one parameter group,

˛t ı ˛
.W.�// D �
 .�/˛t .W.e
ı�//

D �
 .�/�t .e
ı�/W.etı.e
ı�//

D �tC
 .�/W.e.tC
/ı�/

D ˛tC
 .W.�//:

Instead of analyzing the most general case [7, 8, 19] we consider a particular exam-
ple where everything can be checked directly without much technical complication.
Consider a dynamical character of the form

�t .�/ D e�itE�� e�it 2E�C=2 for all t 2 R and � 2 R
2:

Here E is a real parameter whose physical meaning will be seen shortly. Next we
choose a symplectic evolution as ıC D JƒC and hence etıC� D � C tJƒC�
(we shall also consider ı� D Jƒ� and the corresponding one-parameter group).
A direct inspection shows that the family f�t gt2R indeed constitutes a dynamical
character with respect to ıC. Note that the evolution is not unitary in the complex
Hilbert space C. Let us put

˛t .W.�// D e�itE�� e�it 2E�C=2W.� C tJƒC�/ for all t 2 R and � 2 R
2:

(1.14)

As a matter of fact, this dynamics can not only be extended to linear combinations
of Weyl operators, but to the whole Weyl algebra W . Moreover, it can be extended
to the whole algebra B.L2.R2; dm// as well. To see this consider the Hamilton
operator H D 1

2
'2.0; 1/ C E'.1; 0/, which is essentially self-adjoint on the

set S.R/. Its closure has purely continuous spectrum. The physical interpretation
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is clear: the Hamiltonian describes a charged quantum particle (with unit charge)
moving in an external electrostatic field of strength E . The time evolution of the
field ' is easily found to be

eitH'.�/e�itH D '.�/C t.�C'.0; 1/� ��E/� 1

2
�CEt2 for all t 2 R:

Hence the evolution of the Weyl operators is spatial, and it leads to a natural
extension of the dynamics introduced at the beginning,

˛t .x/ D eitHxe�itH for all t 2 R and x 2 B.L2.R2; dm//:

We use the same symbol ˛t for this extended group of automorphisms. So far the
time evolution is Hamiltonian. Now we consider a perturbation of this evolution by
introducing a modification of the dynamical character �t ,

‚t.�/ D �t .�/ exp
�
�
Z t

0

s.�; e�
ı�Qe
ıC�/ d

�

for all t � 0 and � 2 R
2:

(1.15)

Here Q is an arbitrary non-negative matrix on R
2. The family f‚tgt2R satisfies an

equation similar to (1.13),

‚t.�/‚
.etıC�/ D ‚tC
 .�/ for all t; 
 � 0 and � 2 R
2;

hence the expression

Tt.W.�// D ‚t.�/W.etıC�/

defines a semigroup. Again it can be extended to the algebra B.L2.R2; dm//. To see
this note that the function in (1.15) which perturbs �t is the Fourier transform of
some family of probability measures, i.e.,

exp
�
�
Z t

0

s.�; e�
ı�Qe
ıC�/ d

�

D
Z

R2

eis.�;�/ dt.�/;

so the canonical commutation relations in Weyl form (1.12) give

Z

R2

˛t .W.J�/W.�/W.�J�// dt.�/ D ‚t.�/W.etıC�/:
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The extension (using the same notation Tt ) is then given by an appropriate Bochner
integral

Tt .x/ D
Z

R2

eitHW.J�/xW.�J�/e�itH dt.�/

for all t � 0 and x 2 B.L2.R; dm//. To illustrate the dissipative behavior of this
dynamical system let us assume for simplicity that

Q D
�
a �1
1 0

�

with a > 0:

Then we obtain

‚t.�/ D e�itE�� e�it 2E�C=2e�at�2
C for all t � 0 and � 2 R

2:

Note that limt!C1‚t.�/ D 0 for any � with the property that �C 6D 0. If �C D 0

then we see that ‚t.�/ D e�itE�� , and moreover etıC� D �. Hence the Weyl
operators W.�/ with �C 6D 0 are suppressed and vanish as time goes to infinity.
On the other hand, Weyl operators W.�/ with �C D 0 evolve in time in a unitary
way only by a phase factor, i.e., W.�/ 7! e�itE��W.�/ if �C D 0. This behavior
can be extended to more general elements of the Weyl algebra W . To this end let us
introduce some auxiliary notation. Let V� be the one-dimensional subspace of R2

generated by the vector .0; 1/. Then we have a decomposition

W D W.V�/˚ W.R2nV�/

of the Weyl algebra, where W.�/ is the Banach subspace of W generated by the
linear hull of the Weyl operatorsW.�/with � 2 � for some subset� 
 R

2. As V� is
a linear subspace of R2 the corresponding Banach space W.V�/ is a C*-subalgebra
of W . Moreover, the algebra W.V�/ is commutative. We conclude that

lim
t!C1Tt .x/ D 0 for any x 2 W.R2nV�/

relative to the norm topology of the Weyl algebra. On the other hand,

Tt.x/ D eitHxe�itH for all t � 0 and x 2 W.V�/:

This semigroup can be extended in a natural way to a one-parameter group of *-
automorphisms fRt gt2R. This group is spatial, but not inner as the Hamiltonian H
is not affiliated with the von Neumann algebra W.V�/00. Note that this effective
dynamics fRt gt2R on W.V�/ has got a classical counterpart. This can be seen
if one uses the momentum representation, i.e., the Fourier image of the position
representation. The algebra W.V�/ can be identified with the algebra AC.R/ of
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all almost periodic continuous functions on R. The action of4 Rt can be expressed
as .Rtx/.p/ D x.p � tE/ for all p 2 R, t 2 R and x 2 AC.R/. Again, the
effective dynamics is given by a classical evolution on R, i.e., ˆt.p/ D p � tE for
all p 2 R and t 2 R. The parameter �E corresponds to the rate of change of the
“observed” momentum p, i.e., it corresponds to the force, in full agreement with
the interpretation of the parameter �E as the field strength of an electrostatic field,
which indeed is equal to the electrostatic force acting on the (positive) unit charge.

It is interesting to look at the predual semigroup fTt�gt�0. It describes the wave
packet reduction in the momentum representation in a similar way as in [13], i.e.,
one obtains the evolution of the density matrices in the momentum representation

Tt�.�.p; q// D e�at.p�q/2�.ˆt.p/;ˆt .q//:

The novel aspect in comparison to [13] is the presence of the nontrivial classical
evolution ˆt in addition to the wave packet reduction. This model, as well a model
given below, can be generalized to von Neumann algebras of type III [8]. In partic-
ular, one can consider the Araki–Woods nonzero temperature representation [2] as
a starting point for this generalized construction and analysis.

If one chooses a differentQ, e.g.,

Q D
�
0 �1
1 a

�

with a > 0;

then the dynamics fTtgt�0 is ergodic, i.e.,

lim
t!C1Tt .x/ D 0 for any x 2 W.R2nf0g/

relative to the norm topology of the Weyl algebra. Moreover, Tt .�/ D � for all
t � 0.

Using the unitary equivalence of the operators Oq and Op, one can repeat the
analysis discussed above for a Hamiltonian of the type H D '.0; 1/ C 1

2
'2.1; 0/

on the domain S.R/. This Hamiltonian, in some sense, is similar to the one Bell
used in his discussion of the wave packet reduction [3]. Again, one either arrives at
a uniform motion on R, namely, ˆt .q/ D q � t for all q 2 R and t 2 R, or one
obtains ergodic behavior by an appropriate choice of the matrix Q.

4We mean the image of Rt under the identification of W.V�/ and AC.R/.
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Appendix

Sketch of Proof of Theorem 7 The proof is organized by successively proving the
following three properties.

P1 x 2 L1.�!0.A// if and only if Œ�!0.A/; Œ�!0.A/; x�� D 0.
P2 L1.�!0.A//\ L1.�!0.H0

S // D C�.
P3 M D C� if and only if kerLD \ L1.HS/

0 D C�.

Given these properties the proof is easily carried through. If x 2 kerLD \L1.HS/
0

then Œ�!0.A/; Œ�!0.A/; x�� D 0 and ŒHS; x� D 0. Consequently, by P1 we
get x 2 L1.�!0.A//, and hence Œ�!0.H

0
S /; x� D ŒHS; x� D 0, i.e., x 2

L1.�!0.A// \ L1.�!0.H0
S // D C� according to P2. In this way we obtained

kerLD \ L1.HS/
0 D C�, i.e., M D C� according to P3. To complete the proof

we therefore need to establish properties P1, P2 and P3.

Proof of P1: We start by proving the direction “(”. Let us define the derivation
ıx.�/ D iŒ�; x�. If Œ�!0 .A/; Œ�!0.A/; x�� D 0 then Œ�!0.A/; x� 2 L1.�!0.A// as
L1.�!0.A// is m. a. s. a. (see the proof of P2 below). Let P be any polynomial,
then

ıx.P.�!0.A/// D iŒP.�!0.A//; x� D iŒ�!0.A/; xP
0.�!0.A//� 2 L1.�!0.A//:

This means that ıx.L1.�!0.A/// 
 L1.�!0.A// since ıx is continuous in the
weak operator topology. But L1.�!0.A// is abelian, thus ıx.E/ D 0 for any
projectorE from the domain of the derivation ıx. On the other hand, ıx is defined
on the whole algebra and in particular L1.�.A// is contained in its domain.
Hence

ıx �L1.�!0 .A//
D 0:

In particular, Œ�!0 .A/; x� D �iıx.�!0.A// D 0. But L1.�!0.A// is a m. a. s. a.,
hence x 2 L1.�!0.A//. The proof of the converse is obvious.

Proof of P2: Let C3 
 A be C*-algebra generated by the set

f�i1 ˝ � � � ˝ �in ˝ �˝ � � � ; ik D 0; 3 for k D 1; : : : ; n; n D 1; 2; : : :g:

Then �!0.C3/
00 is a m. a. s. a. If we substitute �3 by �1 we can define C1 in

a similar fashion and get another m. a. s. a. �!0.C1/
00. Evidently, �!0.C3/

00 \
�!0.C1/

00 D C�. Now the choice of the sequences fhlglD1;2;::: and falglD1;2;:::
in the statement of the Theorem ensures that L1.�!0.H0

S // D �!0.C3/
00, and

L1.�!0.A// D �!0.C1/
00 as is proven below. Let us introduce some notation.

As the Cantor set C is homeomorphic to f0; 1g�1 we shall use the representation
of elements ! 2 C by

! � fi1; i2; : : :g with i1; i2; : : : 2 f0; 1g:
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We say that two elements !0 and !1 constitute a pair of adjoint points if

!0 D fi1; i2; : : : ; im; 0; 1; 1; 1; : : :g and

!1 D fi1; i2; : : : ; im; 1; 0; 0; 0; : : :g

for some non-negative integer m. Let C0 be the set of pairs of adjoint points.
Moreover, letˆ W �!0.C3/ �! C.C/ denote the Gelfand–Naimark isomorphism,
where C.C/ is the set of all continuous functions defined on Cantor set. Let us
consider the unique extension ofˆ to the normal isomorphism‰ W �!0.C3/00 �!
L1.C; /, where D Q

0 with the measure0 on f0; 1g defined by0.f0g/ D
0.f1g/ D 1

2
.

Finally, C0.C/ is the set of all continuous functions f such that f .!0/ D f .!1/

for some pair of adjoint points !0 and !1. Let h D ˆ.�!0.H
0
S //, then

h.fi1; i2; : : :g/ D
1X

lD1
.�1/il hl :

We can evaluate the difference at the pair of adjoint points to obtain

h.!0/ � h.!1/ D 2
�
hmC1 �

1X

lDmC2
hl

�
� 0;

so the function h takes different values to different points, except perhaps a
pair of adjoint points of C0. Repeating the standard argument we get C0.C/ 

ˆ.C �.�; �!0.H0

S ///, where C �.D/ denotes the smallest C*-algebra generated
by the set D.
Let Pi1i2���im D �!0.Pi1 ˝ Pi2 ˝ � � � ˝ Pim ˝ � ˝ � � � / be one of the generating
projectors of �.C3/. Then

Pi1i2���im 2 L1.�!0.H0
S // (1.16)

for any i1; i2; : : : ; im 2 f0; 1g, and m D 1; 2; : : :. Consequently, �!0.C3/ 

L1.�!0.H0

S // and hence �!0.C3/
00 
 L1.�!0.H0

S //. We give the proof
of (1.16) only in the special case of the projectorP0 (m D 1, i1 D 0) to avoid the
complex notation of the general case. Let ffng be the sequence in C0.C/ given by

f .fi1; i2; : : :g/ D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

1 W i1 D 0

1

2
C
1X

lD1
.�1/inCl 1

2lC1
W i1 D 1;

nX

lD2
il D 0

0 W i1 D 1;

nX

lD2
il 6D 0

;
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where 0 	 fnC1 	 fn 	 1 for n D 1; 2; : : :. As fn 2 C0.C/, there exists
Fn 2 C �.�; �!0.H0

S // such that fn D ˆ.Fn/ and moreover 0 	 FnC1 	 Fn 	 �

for all n D 1; 2; : : :. Hence Fn ! F in the strong operator topology. The map ‰
is normal, hence 1 � ‰.F / D sup.1 � fn/ D 1 � ‰.P0/, where we have used
.f1; 0; 0; : : :g/ D 0. Consequently, P0 D F 2 L1.�!0.H0

S //. This ends the
proof of P2.

Proof of P3: We start by proving the direction “(”. Using (1.11) we deduce that
ıHS.M/ 
 M, so we can introduce another derivation defined by

ı1 � ıHS �M :

The derivation ı1 is inner, i.e., ı1.�/ D iŒH1; �� for some Hermitian operatorH1 2
M (see, e.g., [24]). In particular, for each spectral projector P 2 L1.H1/ we
get P 2 kerLD. On the other hand, ŒHS; P � D �iı1.P / D ŒH1; P � D 0, hence
P 2 L1.HS/

0. Summarizing, we have P 2 kerLD \ L1.HS/
0 D C�. This

means that H1 D ��, and consequently ŒHS; x� D �iı1.x/ D Œ��; x� D 0 for
any x 2 M. We conclude that M 
 kerLD \ L1.HS/

0 D C�.
For the direction “)” notice that for a projector P 2 L1.HS/

0 we have
ŒHS; P � D 0 and hence LD ı ımHS

D 0 for any m D 1; 2; : : :. This means that
P 2 M if and only if P 2 kerLD. Consequently, if P 2 kerLD \ L1.HS/

0
then P 2 M D C�. This in turn means that P D � or P D 0. Hence
kerLD \ L1.HS/

0 D C�.
ut
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Chapter 2
Quantum Systems and Resolvent Algebras

Detlev Buchholz and Hendrik Grundling

2.1 Introduction

The conceptual backbone for the modeling of the kinematics of quantum systems
is the Heisenberg commutation relations which have found their mathematical
expression in various guises. There is an extensive literature analyzing their
properties, starting with the seminal paper of Born, Jordan and Heisenberg on the
physical foundations and reaching a first mathematical satisfactory formulation in
the works of von Neumann and of Weyl.

These canonical systems of operators may all be presented in the following
general form: there is a real (finite or infinite dimensional) vector space X equipped
with a non-degenerate symplectic form � W X � X ! R and a linear map � from
X onto the generators of a polynomial *-algebra P.X; �/ of operators satisfying the
canonical commutation relations

�
�.f /; �.g/

� D i�.f; g/ 1; �.f /� D �.f / :

In the case that X is finite dimensional, one can reinterpret this relation in terms
of the familiar quantum mechanical position and momentum operators, and if X
consists of Schwartz functions on some manifold one may consider � to be a
bosonic quantum field. As is well-known, the operators�.f / cannot all be bounded.
Moreover, the algebra P.X; �/ does not admit much interesting dynamics acting
on it by automorphisms; in fact there are in general only transformations induced
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by polynomial Hamiltonians which leave it invariant [7]. Thus P.X; �/ is not a
convenient kinematical algebra in either respect.

The inconveniences of unbounded operators can be evaded by expressing the
basic commutation relations in terms of bounded functions of the generators �.f /.
In the approach introduced by Weyl, this is done by considering the C*-algebra
generated by the set of unitariesW.f / PD exp.i�.f //, f 2 X (the Weyl operators)
satisfying the Weyl relations

W.f /W.g/ D e�i�.f;g/=2 W.f C g/ ; W.f /� D W.�f / :

This is the familiar Weyl (or CCR) algebra W.X; �/. Yet this algebra still suffers
from the fact that its automorphism group does not contain physically significant
dynamics [9]. This deficiency can be traced back to the fact that the Weyl algebra is
simple, whereas any unital C*-algebra admitting an expedient variety of dynamics
must have ideals [4, Sec. 10], cf. also the conclusions.

For finite systems this problem can be solved by proceeding to the twisted
group algebra [10] derived from the unitaries W.f /, f 2 X . By the Stone–von
Neumann theorem this algebra is isomorphic to K.H/, the compact operators on a
separable Hilbert space, for any finite dimensional X . This step solves the problem
of dynamics for finite systems, but it cannot be applied as such to infinite systems
since there X is not locally compact. Moreover, one pays the price that the original
operators, having continuous spectrum, are not affiliated with K.H/. So one forgets
the specific properties of the underlying quantum system.

This unsatisfactory situation motivated the formulation of an alternative version
of the C*-algebra of canonical commutation relations, given in [4]. Here one con-
siders the C*-algebra generated by the resolvents of the basic canonical operators
which are formally given byR.�; f / PD .i�1��.f //�1 for � 2 Rnf0g, f 2 X . All
algebraic properties of the operators �.f / can be expressed in terms of polynomial
relations amongst these resolvents. Hence, in analogy to the Weyl algebra generated
by the exponentials, one can abstractly define a unital C*-algebraR.X; �/ generated
by the resolvents, called the resolvent algebra.

In accordance with the requirement of admitting sufficient dynamics the resol-
vent algebras have ideals. Their ideal structure was recently clarified in [1], where it
was shown that it depends sensitively on the size of the underlying quantum system.
More precisely, the specific nesting of the primitive ideals encodes information
about the dimension of the underlying space X . This dimension, if it is finite,
is an algebraic invariant which labels the isomorphism classes of the resolvent
algebras. Moreover, the primitive ideals are in one-to-one correspondence to the
spectrum (dual) of the respective algebra, akin to the case of commutative algebras.
The resolvent algebras are postliminal (type I) if the dimension of X is finite and
they are still nuclear if X is infinite dimensional. Thus these algebras not only
encode specific information about the underlying systems but also have comfortable
mathematical properties.

The resolvent algebras already have proved to be useful in several applications
to quantum physics such as the representation theory of abelian Lie algebras of
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derivations [5], the study of constraint systems and of the BRST method in a
C*-algebraic setting [4, 6], the treatment of supersymmetric models on non-compact
spacetimes and the rigorous construction of corresponding JLOK-cocycles [3].
Their virtues also came to light in the formulation and analysis of the dynamics
of finite and infinite quantum systems [2, 4].

In the present article we give a survey of the basic properties of the resolvent
algebras and an outline of recent progress in the construction of dynamics, shedding
light on the role of the ideals. The subsequent section contains the formal definition
of the resolvent algebras and some comments on their relation to the standard Weyl
formulation of the canonical commutation relations. Section 2.3 provides a synopsis
of representations of the resolvent algebras and some structural implications and
Sect. 2.4 contains the discussion of observables and of dynamics. The article
concludes with a brief summary and outlook.

2.2 Definitions and Basic Facts

Let .X; �/ be a real symplectic space; in order to avoid pathologies we make the
standing assumption that .X; �/ admits a unitary structure [11]. The pre-resolvent
algebra R0.X; �/ is the universal *-algebra generated by the elements of the set
fR.�; f / W � 2 Rnf0g; f 2 Xg satisfying the relations

R.�; f /� R.; f /Di.� �/R.�; f /R.; f / (2.1)

R.�; f /�DR.��; f / (2.2)
�
R.�; f /; R.; g/

�Di�.f; g/R.�; f /R.; g/2R.�; f / (2.3)

� R.��; �f /DR.�; f / (2.4)

R.�; f /R.; g/DR.�C ; f C g/
�
R.�; f /CR.; g/

C i�.f; g/R.�; f /2R.; g/
	

(2.5)

R.�; 0/D� i
�

1 (2.6)

where �; ; � 2 Rnf0g and f; g 2 X , and for (2.5) we require � C  6D 0. That
is, start with the free unital *-algebra generated by fR.�; f / W � 2 Rnf0g; f 2 Xg
and factor out by the ideal generated by the relations (2.1) to (2.6) to obtain the
*-algebra R0.X; �/.

Remarks (a) Relations (2.1), (2.2) encode the algebraic properties of the resolvent
of some self-adjoint operator, (2.3) amounts to the canonical commutation
relations and relations (2.4) to (2.6) correspond to the linearity of the initial
map � on X .



36 D. Buchholz and H. Grundling

(b) The *-algebra R0.X; �/ is nontrivial, because it has nontrivial representations.
For instance, in a Fock representation .�;H/ one has self-adjoint operators
��.f /, f 2X satisfying the canonical commutation relations over .X; �/
on a sufficiently big domain in the Hilbert space H so that one can define
�.R.�; f //

:D .i�1 � ��.f //�1 to obtain a representation � of R0.X; �/.

It has been shown in [4, Prop. 3.3] that the following definition is meaningful.

Definition 2.1 Let .X; �/ be a symplectic space. The supremum of operator norms
with regard to all cyclic *-representations .�;H/ of R0.X; �/

kRk :D sup
.�;H/

k�.R/kH ; R 2 R0.X; �/

exists and defines a C*-seminorm on R0.X; �/. The resolvent algebra R.X; �/ is
defined as the C*-completion of the quotient algebra R0.X; �/= ker k � k, where here
and in the following the symbol ker denotes the kernel of the respective map.

Of particular interest are representations of the resolvent algebras, such as the
Fock representations, where the abstract resolvents characterized by conditions
(2.1), (2.2) (sometimes called pseudo-resolvents) are represented by genuine resol-
vents of self-adjoint operators.

Definition 2.2 A representation .�;H/ of R.X; �/ is said to be regular if for each
f 2 X there exists a densely defined self-adjoint operator ��.f / such that one has
�.R.�; f // D .i�1 � ��.f //

�1, � 2 Rnf0g. (This is equivalent to the condition
that all operators �.R.�; f // have trivial kernel.)

The following result characterizing regular representations, cf. [4, Thm. 4.10 and
Prop. 4.5], is of importance, both in the structural analysis of the resolvent algebras
and in their applications. It implies in particular that the resolvent algebras have
faithful irreducible representations (e.g. the Fock representations), so their centers
are trivial.

Proposition 2.3 Let .�;H/ be a representation of R.X; �/.

(a) If .�;H/ is regular it is also faithful, i.e. k�.R/kH D kRk for R 2 R.X; �/.
(b) If .�;H/ is faithful and the weak closure of �.R.X; �// is a factor, then .�;H/

is regular.

The regular representations of the resolvent algebras are in one-to-one correspon-
dence with the regular representations of the Weyl-algebras, cf. [4, Cor. 4.4]. (Recall
that a representation .�;H/ of W.X; �/ is regular if the maps � 2 R 7! �.W.�f //

are strong operator continuous for all f 2 X .) In fact one has the following result.

Proposition 2.4 Let .X; �/ be a symplectic space and

(a) let .�;H/ be a regular representation of the resolvent algebra R.X; �/

with associated self-adjoint operators ��.f / defined above. The exponentials
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W�.f /
:D exp.i��.f //, f 2 X satisfy the Weyl relations and thus define a

regular representation of the Weyl algebra W.X; �/ on H;
(b) let .�;H/ be a regular representation of the Weyl algebra W.X; �/ and let

��.f / be the self-adjoint generators of the Weyl operators. The resolvents
R�.�; f / D .i�1 � ��.f //�1 with � 2 Rnf0g, f 2 X satisfy relations (2.1) to
(2.6) and thus define a regular representation of the resolvent algebra R.X; �/

on H.

Whilst this proposition establishes the existence of a bijection between the
regular representations of R.X; �/ and those of W.X; �/, there is no such map
between the non-regular representations of the two algebras. In order to substantiate
this point consider for fixed nonzero f 2 X the two commutative subalgebras
C �fR.1; sf / W s 2 Rg � R.X; �/ and C �fW.sf / W s 2 Rg � W.X; �/. These
algebras are isomorphic respectively to the continuous functions on the one point
compactification of R, and the continuous functions on the Bohr compactification
of R. Now the point measures on the compactifications having support in the com-
plement of R produce non-regular states (after extending to the full C*-algebras by
Hahn–Banach) and there are many more of these for the Bohr compactification than
for the one point compactification of R. Proceeding to the GNS-representations it
is apparent that the Weyl algebra has substantially more non-regular representations
than the resolvent algebra.

2.3 Ideals and Dimension

Further insight into the algebraic properties of the resolvent algebras is obtained by
a study of its irreducible representations. In case of finite dimensional symplectic
spaces these representations have been completely classified [4, Prop. 4.7], cf.
also [1].

Theorem 3.1 Let .X; �/ be a finite dimensional symplectic space and let .�;H/
be an irreducible representation of R.X; �/. Depending on the representation, the
space X decomposes as follows, cf. Fig. 2.1.

(a) There is a unique subspace XR � X such that there are self-adjoint operators
��.fR/ satisfying �.R.�; fR// D .i�1 � ��.fR//�1 for � 2 Rnf0g, fR 2 XR.

(b) Let XT
:D ff 2 XR W �.f; g/ D 0 for all g 2 XRg. Then �� restricts on XT to

a linear functional ' W XT ! R such that �.R.�; fT // D .i�� '.fT //�11 for
fT 2 XT , � 2 Rnf0g.

(c) For fS 2 XS :D XnXR and � 2 Rnf0g one has �.R.�; fS// D 0.

Conversely, given subspaces XT � XR � X and a linear functional ' W XT ! R

there exists a corresponding irreducible representation .�;H/ of R.X; �/, unique
up to equivalence, with the preceding three properties.
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X              XX              X
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Fig. 2.1 Decomposition of X fixed by an irreducible representation

This result may be regarded as an extension of the Stone–von Neumann
uniqueness theorem for regular representations of the CCR algebra. It shows that the
only obstruction to regularity is the possibility that some of the underlying canonical
operators are infinite and the corresponding resolvents vanish. This happens in
particular if there are some canonically conjugate operators having sharp (non-
fluctuating) values in a representation, as is the case for constraint systems [4,
Prop. 8.1]. But, in contrast to the Weyl algebras, the non-regular representations
of the resolvent algebras only depend on the values of these canonical operators. So
the abundance of different singular representations of the Weyl algebras shrink to a
manageable family on the resolvent algebras.

The preceding theorem is the key to the structural analysis of the resolvent
algebras for symplectic spaces of arbitrary finite dimension. We recall in this context
that the primitive ideals of a C*-algebra are the (possibly zero) kernels of irreducible
representations and that the spectrum of the algebra is the set of unitary equivalence
classes of irreducible representations. The following result has been established
in [1].

Theorem 3.2 Let .X; �/ be a finite dimensional symplectic space.

(a) The mapping O� 7! ker O� from the elements O� of the spectrum (dual) of the
resolvent algebra R.X; �/ to its primitive ideals ker O� is a bijection.

(b) Let L
:D sup fl 2 N W ker O�1 � ker O�2 � � � � ker O�lg be the maximal length of

proper inclusions of primitive ideals of R.X; �/. Then L D dim.X/=2C 1.

Remarks Property (a) is a remarkable feature of the resolvent algebras, shared with
the abelian C*-algebras. It rarely holds for non-commutative algebras and also
fails if X is infinite dimensional. The quantity L defined in (b) is an algebraic
invariant, so this result shows that the dimension dim.X/ of the underlying systems
is algebraically encoded in the resolvent algebras. As a matter of fact, L is a
complete algebraic invariant of resolvent algebras in the finite dimensional case.

As indicated above, there is an algebraic difference between the resolvent
algebras for finite dimensional X and those where X has infinite dimension. A
further difference is seen through the minimal (nonzero) ideals [1].

Proposition 3.3 Let .X; �/ be a symplectic space of arbitrary dimension and let
I � R.X; �/ be the intersection of all nonzero ideals of R.X; �/.
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(a) If dim.X/ < 1 then I is isomorphic to the C*-algebra K.H/ of compact
operators. Moreover, in any irreducible regular representation .�;H/ one has
�.I/ D K.H/.

(b) If dim.X/ D 1 then I D f0g. In fact, there exists no nonzero minimal ideal of
R.X; �/ in this case.

If .X; �/ is infinite dimensional the resolvent algebraR.X; �/ is the C*-inductive
limit of the net of its subalgebras R.Y; �/ where Y �X ranges over all finite
dimensional non-degenerate subspaces of X , cf. [4, Thm. 4.9]. This fact in
combination with the first part of the preceding result is a key ingredient in the
construction of dynamics, see below. It also enters in the proof of the following
statement [1].

Proposition 3.4 Let .X; �/ be a symplectic space of arbitrary dimension.

(a) R.X; �/ is a nuclear C*-algebra,
(b) R.X; �/ is a postliminal (type I) C*-algebra if and only if dim.X/ < 1.

Recall that a C*-algebra is said to be postliminal (type I) if all of its irreducible
representations contain the compact operators and that postliminal C*-algebras as
well as their C*-inductive limits are nuclear, i.e. their tensor product with any other
C*-algebra is unique. It should be noted, however, that the resolvent algebras are
not separable [4, Thm. 5.3]. With this remark we conclude our outline of pertinent
algebraic properties of the resolvent algebras.

2.4 Observables and Dynamics

The main virtue of the resolvent algebras consists of the fact that it includes
many observables of physical interest and admits non-trivial dynamics. In order
to illustrate this important feature we discuss in detail a familiar example of a finite
quantum system and comment on infinite systems at the end of this section.

Let .X; �/ be a finite dimensional symplectic space, i.e. dim.X/ D 2N for
some N 2 N. Since regular representations of the resolvent algebras are faithful,
cf. Proposition 2.3, it suffices to consider any regular irreducible representation
.�0;H0/ ofR.X; �/ (which is unique up to equivalence). Choosing some symplectic
basis fk; gk 2 X and putting Pk

:D ��0.fk/, Qk
:D ��0.gk/, k D 1; : : : N we

identify the self-adjoint operators fixed by the corresponding resolvents with the
momentum and position operators of N particles in one spatial dimension.

The (self-adjoint) quadratic Hamiltonian

H0
:D

NX

kD1
. 1
2mk

P 2
k C mk!

2
k

2
Q2
k/
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describes the free, respectively oscillatory motion of these particles, where mk are
the particle masses and !k � 0 the frequencies of oscillation, k D 1; : : : N . The
interaction of the particles is described by the operator

V
:D

X

1�k<l�N
Vkl.Qk �Ql/

where we assume for simplicity that the potentials Vkl are real and continuous,
vanish at infinity, but are arbitrary otherwise. Since V is bounded, the Hamiltonian
H

:D H0CV is self-adjoint on the domain ofH0 and its resolvents are well defined.

Proposition 4.1 Let H be the Hamiltonian defined above. Then

.i1 �H/�1 2 �0.R.X; �// ;  2 Rnf0g :

Remark Since �0 is faithful its inverse ��10 W �0.R.X; �// ! R.X; �/ exists, so
this result shows that H is affiliated with the resolvent algebra. Note that this is
neither true for the Weyl algebra W.X; �/ nor for the corresponding twisted group
algebra K.H/ if one of the frequencies !k vanishes. Thus R.X; �/ contains many
more observables of physical interest than these conventional algebras.

Proof Let Xk � X be the two-dimensional subspaces spanned by the symplectic
pairs .fk; gk/, let �k

:D � � Xk � Xk and let .�k;Hk/ be regular irreducible
representations of R.Xk; �k/, k D 1; : : : N . Then �0

:D �1 ˝ � � � ˝ �N defines an
irreducible representation of the C*-tensor product R.X1; �1/˝� � �˝R.XN ; �N / on
the Hilbert space H0

:D H1˝� � �˝HN . It extends by regularity to the Weyl algebra
W.X; �/ ' W.X1; �1/ ˝ � � � ˝ W.XN ; �N / and hence to a regular representation
of R.X; �/, cf. Proposition 2.4.

One has H0k
:D .i1 � 1

2mk
P 2
k � mk!

2
k

2
Q2
k/
�1 2 �k.R.Xk; �k//, k D 1; : : : N ,

disregarding tensor factors of 1. If !k > 0 this follows from the fact that the
resolvent of the harmonic oscillator Hamiltonian is a compact operator and hence
belongs to the compact ideal of �k.R.Xk; �k//, cf. Proposition 3.3. If !k D 0

one resorts to the fact that the abelian C*-algebra generated by the resolvents
.i�1 � Pk/�1, � 2 Rnf0g coincides with C0.Pk/, the algebra of all continuous
functions of Pk vanishing at infinity. Hence C0.Pk/ � �k.R.Xk; �k//. Since
.i1 � 1

2mk
P 2
k /
�1 2 C0.Pk/ the preceding statement holds also for !k D 0.

As is well known C0.RCN / D C0.RC/
N

‚ …„ ƒ˝ � � � ˝C0.RC/ and it is also clear that
u1; : : : ; uN 7! .i � u1 � � � � uN /�1 is an element of C0.RCN /. Since the resol-
vents of the positive self-adjoint operators H0k generate the abelian C*-algebras
C0.H0k/, k D 1; : : : ; N , it follows from continuous functional calculus that
.i1 �H0/

�1D�i1 �H01� � � �H0N

	�12C0.H01/˝ � � � ˝C0.H0N /��0.R.X; �//.
Similarly, for the interaction potentials one uses the fact that the abelian C*-

algebras generated by the resolvents .i�1 � .Qk �Ql//
�1, � 2 Rnf0g coincide
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with C0.Qk �Ql/. So as Vkl 2 C0.R/, one also has that

V D
X

1�k<l�N
Vkl.Qk �Ql/ 2 �0.R.X; �//:

In summary one gets .1 � .i1 � H0/
�1V / 2 �0.R.X; �//. Its inverse exists if

jj > kV k and .i1�H/�1 D .1�.i1�H0/
�1V /�1.i1�H0/

�1 2 �0.R.X; �//
for such . The statement for arbitrary  2 Rnf0g then follows from the resolvent
equation forH , completing the proof.

As a matter of fact, the preceding proposition holds for a much larger class
of interaction potentials, including discontinuous ones. It does not hold, however,
for certain physically inappropriate Hamiltonians such as that of the anti-harmonic
oscillator [4, Prop. 6.3]. The characterization of all Hamiltonians which are affiliated
with resolvent algebras is an interesting open problem.

We turn now to the analysis of the dynamics induced by the Hamiltonians
given above. The exponentials of the quadratic HamiltoniansH0 induce symplectic
transformations, so one has .Ad eitH0 /.�0.R.X; �/// D �0.R.X; �// for t 2 R.
For the proof that the resolvent algebra is also stable under the adjoint action of
the interacting dynamics the crucial step consists of showing that the cocycles
�.t/ D eitHe�itH0 are elements of �0.R.X; �//. Putting V.t/ D .Ad eitH0 /.V / one
can present the cocycles in the familiar form of a Dyson series

�.t/ D 1C
1X

nD1
in
Z t

0

dt1

Z t1

0

dt2 : : :
Z tn�1

0

dtn V .tn/ � � �V.t1/

and this series converges absolutely in norm since the operators V.t/ are uniformly
bounded. Moreover, the functions t 7! V.t/ have values in the algebra�0.R.X; �//;
but since they are only continuous in the strong operator topology it is not clear
from the outset that their integrals, defined in this topology, are still contained in
this algebra. Here again the specific structure of the resolvent algebra matters. It
allows to establish the desired result.

Proposition 4.2 Let H be the Hamiltonian defined above. Then

.Ad eitH /.�0.R.X; �/// D �0.R.X; �// ; t 2 R :

Remark Since �0 is faithful it follows from this result that ˛t
:D ��10 .Ad eitH /�0,

t 2 R defines a one-parameter group of automorphisms of R.X; �/. It should be
noted, however, that its action is not continuous in the strong (pointwise norm)
topology of R.X; �/.

Proof Let k; l 2 1; : : : ; N be different numbers, let .fk; gk/ and .fl ; gl / be
symplectic pairs as in the previous proof and let Xkl � X be the space spanned
by hkl.t/

:D ..cos!kt/ gk � .cos!l t/ gl C .sin!kt/=mk!k fk � .sin!l t/=ml!l fl /,
t 2 R, where we stipulate .sin!t/=! D t if ! D 0. This space is non-degenerate
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and, depending on the masses and frequencies, either two or four dimensional.
We put �kl

:D � � Xkl � Xkl. Let Vkl.t/
:D .Ad eitH0 /.Vkl.Qk �Ql//, where

Vkl.Qk � Ql/ is any one of the two-body potentials contributing to V . Then, for
any t 2 R,

Vkl.t/ D Vkl..cos!kt/Qk � .cos!lt/Ql C .sin!kt/=mk!kPk � .sin!lt/=ml!l Pl/

2 �0.R.Xkl; �kl// :

Now the function s1; : : : sd 7! Vkl.s1/ � � �Vkl.sd / is continuous in the strong
operator topology and, for almost all s1; : : : sd , an element of the compact ideal
of �0.R.Xkl; �kl//, provided d � dim.Xkl/. The latter assertion follows from the
fact that Vkl.s/ is, for given s, an element of the abelian C*-algebra generated by
the resolvents �0.R.�; hkl.s///, � 2 Rnf0g and that the compact ideal coincides
with the principal ideal of �0.R.Xkl; �kl// generated by �0.R.�1; h1/ � � �R.�d ; hd //
for any choice of �1; : : : �d 2 Rnf0g and of elements h1; : : : hd 2 Xkl which span

Xkl [2]. It is then clear that
� R t

0
dsVkl.s/

	d D R t
0

ds1 � � � R t
0

dsd Vkl.s1/ � � �Vkl.sd / is
contained in the compact ideal of �0.R.Xkl; �kl//. But this is then also true for
the operator

R t
0

dsVkl.s/ since it is self-adjoint. As k; l were arbitrary this implies
R t
0

dt1V .t1/ 2 �0.R.X; �//.
That all other terms in the Dyson series are elements of �0.R.X; �// is seen

by induction. Let In.t/
:D R t

0
dt1
R t1
0

dt2 : : :
R tn�1

0
dtn V .tn/ � � �V.t1/ 2 �0.R.X; �//,

t 2 R; then InC1.t/ D R t
0 dt1In.t1/V .t1/, where the integrals are defined in the

strong operator topology. Now t 7! In.t/ is continuous in norm, hence InC1.t/ can
be approximated according to

InC1.t/ D lim
J!1

JX

jD1
In. jt=J /

Z jt=J

.j�1/t=J
dt1V .t1/ ;

where the limit exists in the norm topology. Since each term in this sum is
an element of �0.R.X; �// according to the induction hypothesis it follows that
InC1.t/ 2 �0.R.X; �//. Because of the convergence of the Dyson series this implies
�.t/ 2 �0.R.X; �//, t 2 R, completing the proof of the statement.

Having illustrated the virtues of the resolvent algebras for finite systems we
discuss now the situation for infinite systems. There the results are far from being
complete, though promising. For the sake of concreteness we consider an infinite
dimensional symplectic space .X; �/ with a countable symplectic basis fk; gk 2 X ,
k 2 Z. Similarly to the case of finite systems one can analyze the observables
and dynamics associated with R.X; �/ in any convenient faithful representation
.�0;H0/, such as the Fock representation.

As before, we identify the self-adjoint operators fixed by the resolvents with the
momentum and position operators of particles, Pk

:D ��0.fk/, Qk
:D ��0.gk/,

k 2 Z. In view of Haag’s Theorem [8] it does not come as a surprise that global
observables, such as Hamiltonians having a unique ground state or the particle
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number operator are no longer affiliated with the resolvent algebras of such infinite
systems. In fact, one has the following general result [2].

Lemma 4.3 Let .X; �/ be an infinite dimensional symplectic space, let .�0;H0/ be
a faithful irreducible representation of R.X; �/ and letN be a (possibly unbounded)
self-adjoint operator on H0 with an isolated eigenvalue of finite multiplicity. Then
.i1 �N/�1 … �0.R.X; �// for  2 Rnf0g, i.e. N is not affiliated with R.X; �/.

Observables corresponding to finite subsystems of the infinite system are still
affiliated with R.X; �/. Relevant examples are the partial Hamiltonians of the form
given above,

Hƒ
:D
X

k2ƒ
. 1
2mk

P 2
k C mk!

2
k

2
Q2
k/ C

X

k;l 2ƒ
Vkl.Qk �Ql/ ;

where ƒ � Z is any finite set. By exactly the same arguments as in the proof
of Proposition 4.1 one can show that any such Hƒ is affiliated with R.X; �/.
Clearly, these Hamiltonians may have isolated eigenvalues, but these have infinite
multiplicity. By the preceding arguments one can also show that the resolvent
algebra is stable under the time evolution induced by the partial Hamiltonians.
Moreover, for suitable potentials the evolution converges to some global dynamics
in the limit ƒ % Z. The precise results are as follows.

Proposition 4.4 Let Hƒ, ƒ � Z be the partial Hamiltonians introduced above,
where Vkl are continuous functions tending to 0 at infinity, k; l 2 Z.

(a) Then .Ad eitHƒ / .�0.R.X; �/// D �0.R.X; �//, t 2 R.
(b) Let C;D be positive constants such that kVklk 	 C and Vkl D 0 for jk�l j � D,

k; l 2 Z. Then limƒ%Z .Ad eitHƒ /, t 2 R exists pointwise on �0.R.X; �// in
the norm topology.

A proof of this statement is given in [2]. It generalizes the results on a class of
models describing particles which are confined to the points of a one-dimensional
lattice by a harmonic pinning potential and interact with their nearest neighbors [4].
In the present more general form it also has applications to other models of physical
interest. These results provide evidence to the effect that the resolvent algebras are
an expedient framework also for the discussion of the dynamics of infinite systems.
Yet a full assessment of their power for the treatment of such systems requires
further analysis.

2.5 Conclusions

In the present survey we have outlined some recent structural results and instructive
applications of the theory of resolvent algebras. These algebras are built from the
resolvents of the canonical operators in quantum theory and their algebraic relations
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encode the basic kinematical features of quantum systems just as well as the Weyl
algebras. But, as we have shown, the novel approach cures several shortcomings of
this traditional algebraic setting.

The resolvent algebras comply with the condition that kinematical algebras of
quantum systems must have ideals if they are to carry various dynamics of physical
interest. This requirement can easily be inferred from the preceding arguments in
case of a single particle: there the cocycles �.t/ D eitHe�itH0 appearing in the
interaction picture have the property that the differences .�.t/ � 1/ are compact
operators for generic interaction potentials. Hence .eitHWe�itH � eitH0We�itH0 / is
a compact operator for any choice of bounded operator W . It is then clear that any
unital C*-algebra which is stable under the action of these dynamics must contain
compact operators and consequently have ideals.

The resolvent algebras, respectively their subalgebras corresponding to finite
subsystems, contain these ideals from the outset. As we have demonstrated by
several physically significant examples, the ideals play a substantial role in the con-
struction of dynamics of finite and infinite quantum systems. For they accommodate
the terms in the Dyson expansion of the cocycles resulting from the interaction
picture and thereby entail the stability of the resolvent algebras under the action of
the perturbed dynamics. In order to cover a wider class of models it would, however,
be desirable to invent some more direct argument, avoiding this expansion and the
ensuing questions of convergence.

The ideals of the resolvent algebras also play a prominent role in their classifi-
cation. The nesting of primitive ideals encodes precise information about the size
of the underlying quantum system, i.e. its dimension. It is a complete algebraic
invariant in the finite dimensional case. There is also a sharp algebraic distinction
between finite and infinite quantum systems in terms of their minimal ideals.
In either case the resolvent algebras have comfortable algebraic properties: they
are nuclear, thereby allowing to form unambiguously tensor products with other
algebras which plays a role in the discussion of coupled systems.

In company with the resolvents of the canonical operators all their continuous
functions vanishing at infinity are contained in the resolvent algebras. This feature
ensures, as we have shown, that many operators of physical interest are affiliated
with the resolvent algebras. It also implies that these algebras contain multiplicative
mollifiers for unbounded operators which appear in the algebraic treatment of
supersymmetric models [3] or of constraint systems [4, 6]. Thus the resolvent
algebras provide in many respects a natural and convenient mathematical setting
for the discussion of finite and infinite quantum systems.
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Chapter 3
What the Philosophical Interpretation
of Quantum Theory Can Accomplish

Martin Carrier

3.1 Introduction: What Philosophy Can Do for Science

Some physicists are anxious to understand quantum theory without being misled
by philosophers [11, pp. 111–112]. However, approaching a subject matter with
a philosophical attitude tends to make us aware of problems, issues and all sorts of
contentious claims that might remain hidden and unconscious otherwise. Philosophy
can be good at making issues explicit, while it usually fails to resolve these issues.
Plato realized that being amazed or astonished or unsettled, taumazein, is the
first step toward the gain of knowledge. Speaking more specifically, philosophy
of science approaches the sciences in a reflective attitude. It aims at clarification.
Philosophy is unable to supply data or to decide between rival theories. It rather
aims at sorting out concepts, elucidating relations and illuminating the broader
impact a scientific theory might have on understanding the pertinent phenomena.
In particular, conceptual, epistemological, and ontological issues constitute primary
challenges to philosophical reflection. I will attend to quantum theory in what
follows, but as a preliminary, let me briefly address the similar case of space-time
theory.

Philosophical reflection on space and time represents an earlier version of this
reflecting attitude that also characterizes quantum philosophy. Thus, the former
can serve as a role model of the latter in methodological respect. As regards
conceptual analysis, a major challenge has been to reconstruct clearly in which
sense general relativity theory has abandoned, or still retains, an absolute under-
standing of spatiotemporal properties. Such a clarification can be achieved by
introducing suitable counterconcepts. An absolute space-time property, in contrast
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to a relational one, can stand alone and be couched without reference to what
happens in space-time. An absolute space-time property, in contradistinction to
a relative one, is independent of the frame of reference chosen. An absolute
space-time property, in opposition to a dynamical one, is independent of processes
in space-time [14, pp. 62–64]. Such counterconcepts serve to distinguish between
various aspects that remain interwoven and undifferentiated in the original notion.
Introducing distinctions of this sort contributes to illuminating the meaning of
spatiotemporal notions, as understood in general relativity.

A second dimension of philosophical reflection concerns epistemological anal-
ysis. Recall Ernst Mach’s objections against Isaac Newton’s absolute space that
strongly shaped Albert Einstein’s position on the subject. Mach criticized that
absolute space was inaccessible to experience and that Newton’s notion was not
a legitimate part of scientific theory for this reason. A third branch is ontological:
if the theory under consideration should turn out to be completely true, what is
the ensuing appropriate picture of nature? Regarding space-time theory, one of the
relevant issues is whether the spatiotemporal metric or the metric field is rather to
be taken as a part of space-time or of matter-energy [8, pp. 28–31].

These considerations are intended to make plausible, in a preliminary fashion,
that there are interesting and non-trivial interpretational questions that cannot be
decided by recourse to experience alone. There are sensible challenges left to the
philosophical reflection of physical theories. Conceptual clarification, epistemolog-
ical analysis, and ontological exploration can contribute to a deeper understanding
of what the relevant theory is all about.

I begin by recounting some traditional puzzles and their attempted resolutions
in the philosophy of quantum theory. Then I turn to the EPR-correlations as a
task for conceptual and ontological investigation. Afterward, I address the quantum
measurement problem as an example of an epistemological challenge.

3.2 Traditional Puzzles and Positions in Quantum Philosophy

The Copenhagen Interpretation is at the origin of the philosophy of quantum
mechanics. This interpretation takes macroscopic measuring instruments as being
correctly describable by the concepts of classical physics. By contrast, quantum
phenomena do not fit together so as to yield physical bodies in the familiar,
macroscopic sense, bodies, that is, with a fixed set of properties and another set
of properties that change in accordance with observable interactions with other
bodies. The Copenhagen claim was that physical theory is prevented from getting
any coherent picture of a quantum object, a picture that is capable of capturing the
phenomena in causal and in spatiotemporal terms at the same time. Wave-particle
duality or complementarity are indications of this inability to come up with a single,
coherent notion that could make sense of quantum events [18, pp. 68–69, 87–94].

This failure prompted Copenhagen instrumentalism, according to which
Schrödinger’s equation does not represent physical processes directly but merely
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predicts the outcome of certain quantum measurements. Werner Heisenberg took an
operationalist stance that was advertised as being analogous to Einstein’s approach
to distant simultaneity. The registered relationships are the only phenomena of
relevance. As Heisenberg put it: “Physics ought to describe only the correlation
of observations” (quoted after [4, p. 455]). A quantum phenomenon is always
characterized by its relation to a particular experimental setup, and this essentially
relational nature of quantum states is supposed to imply that there is no independent
quantum reality behind these observations—at least no reality that is subject to
human knowledge. By contrast, the measuring instruments were considered real,
and this is why the need arose to draw a line between these two realms of the
quantum phenomena, on the one hand, and classical objects or bodies, on the other.
This line is known as “Heisenberg’s cut.” As a result, it is illicit to apply quantum
theory to the measuring apparatus [19, p. 115].

Of course, this nomological split between parts of the world appeared unappeal-
ing to many. After all, the Scientific Revolution of the seventeenth century had come
into being by removing the alleged nomological divide between the celestial and
the sublunar spheres. Further, restricting oneself to correlations among observables
seems to rule out any deeper understanding of nature’s contrivances. In addition,
no clear reason was given why quantum theory should not be applied to measuring
instruments. After all, the latter consisted of atoms, too. To make things worse, Niels
Bohr, the Copenhagen champion, had been inconsistent enough to apply quantum
theory to measuring procedures in his debate with Einstein in the late 1920s about
the coherence of the theory ([18, pp. 127–136]; [19, p. 110]; [5, pp. 294–295]). It
was only natural that this road was explored more systematically. This is what John
von Neumann achieved in 1932 with his approach, sometimes called the “orthodox
interpretation.” Von Neumann conceived of the measuring instrument as a quantum
system and analyzed its interaction with the object in quantum theoretical terms. The
result was the emergence of the “quantum measurement problem.” The interaction
between apparatus and quantum object produces entangled states between the two,
but no prediction of any observation. In other words, judged on the basis of quantum
theory, no definite measuring values should ever occur. But they regularly do.

The so-called “collapse postulate” or the “reduction of the wave function” was
introduced as a separate process in addition to the Schrödinger evolution. While the
wave function evolved continuously in ways governed by Schrödinger’s equation,
an abrupt change was supposed to occur whenever a measurement was made. This
collapse is not captured by this equation so that two categorically distinct kinds
of behavior of the wave function were assumed to exist. It is only in virtue of
this latter, non-Schrödinger-like type of evolution that definite measuring values
turn up. The point is not that quantum mechanics fails to predict which particular
measuring value emerges. This inability might simply arise from the indeterminate
nature of quantum processes according to which a particular value is taken by
chance. Which value turns up may be objectively uncertain and this indeterminacy
is reflected by quantum mechanics. There is nothing mysterious about that. The
point rather is that the Schrödinger evolution suggests that a superposition of states,
rather than a particular state corresponding to a particular measuring value, results
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from coupling the observed particle to the measuring apparatus. Accordingly, what
appears anomalous and mysterious from the point of view of Schrödinger’s equation
is that a definite measuring value ensues from the interaction between the particle
and the apparatus in the first place. This is the gap the collapse postulate was
supposed to bridge.

The Copenhagen instrumentalism is now considered obsolete in many quarters.
In the physics community the view has gained prominence that quantum theory
describes natural processes and not just human interventions in such processes. As a
result, the distinguished notion of observation or measurement, that is characteristic
of the Copenhagen approach, has lost its earlier appeal. Rather, observations are
increasingly considered as a special kind of interaction and not as a categorically
distinct sort of intervening in nature. In the Copenhagen vein, only observations
and measurements, but not physical interactions in general, manage to produce the
collapse of the wave packet. Accordingly, quantum theory was not supposed to
describe nature objectively but rather the relationship between human interventions
and nature’s response. By contrast, beginning around 1980, a realist interpretation
of quantum theory has increasingly gained acceptance. This attitude is also based
on the fact that quantum theory has proven robust. During the early decades of
the development of the theory, the general idea had been that all the mysteries
and puzzles would be resolved by a future theory that would supersede and replace
quantum theory in its present shape. Quantum theory is provisional and makeshift,
and the most sensible strategy to follow is to extract robust results from this
ramshackle scheme, results that need be and will be recovered by the expected
future account. Yet now everybody believes that quantum theory is here to stay.
No emergence of a new distinct physical theory is in the offing.

As a result, many physicists grant quantum theory explanatory or realist import.
However, this is not tantamount to the realism suggested by classical physics. The
latter had pursued the project of accounting for nature by abstracting from ourselves,
as it were, by disregarding or correcting for human interaction with nature. This
approach cannot be upheld in the quantum realm. Reference to human intervention
and interaction with an apparatus is indispensable for marshaling the phenomena
appropriately. Quantum realism needs to be of a perspectival character which is not
the same thing as introducing subjectivity into our understanding of reality. Still, this
perspectivalism involves a dependence of our understanding of nature on how we
interact with nature. Even if observation and measurement lose their special position
and are reintegrated into the realm of physical interaction, the ensuing realism is of
a particularly relational character.

Such a relational view of physical reality is genuinely different from the realism
suggested by classical physics. It is sometimes argued that prequantum approaches
to nature should as well have given rise to a relational understanding of objects.
After all, we come to know the properties of objects by entering into a relation
with them. We need to connect the object under scrutiny to a measuring device.
Accordingly, classical realism granted that measuring physical quantities involves
an interaction with the pertinent quantity and is thus bound to interfere with
its magnitude. However, first, this interaction can be made arbitrarily small in
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principle, and, second, it can possibly be accounted for by the physical theories
of the measurement process and thus be corrected. Third, the readings of various
instruments may agree with each other which suggests that these measuring devices
register the same property consistently. Although it is true indiscriminately for the
classical realm and the quantum realm that observing an object means interacting
with this object, the coherence among classical measuring values suggests that
the object and its properties exist independently of this interaction. The numerical
agreement among the results of different methods of measurement suggests that
the results do not essentially depend on these methods. Rather, this agreement
indicates that the results are produced by intrinsic properties of the object under
consideration. After all, this is how Jean Perrin argued for the reality of atoms in
1913. Since 13 dissimilar methods yield the same numerical value of Avogadro’s
constant, something real is referred to by this constant [21, pp. 217–220]. That
is, although we need to rely on establishing a relation with an object in order to
register its properties, the agreement and coherence among the outcome of diverse
approaches of this sort suggest that the nature of these relations is inessential. This
argument provides a basis for taking such measurement results as revealing intrinsic
properties of the object.

Precisely this is different in quantum theory. For example, in many instances,
changing the order of measurements affects the outcome. Under such circumstances
it is clearly unjustified to abstract from the kinds of interactions used for exploring
objects. This is why the relational interpretation of quantum states is non-trivial.
It was not anticipated by classical physics, it was not an unrecognized aspect of
classical physics. It is a feature truly different from classical physics.

Such considerations are often appealed to in favor of what is called “structural
realism,” or “ontological structural realism,” to be more precise. The idea is
that reality does not consist of separate objects with their intrinsic properties,
but is rather made of relations. Bohr’s notion of complementarity is frequently
suggested in support of structural realism. The properties a quantum object exhibits
depend essentially on the apparatus it interacts with. Complementarity in Bohr’s
sense means that two modes of description are appealed to that would contradict
each other if they were applied at the same time. Yet both are necessary for a
comprehensive elucidation of the phenomena. Bohr made this more concrete by
saying that we can either give a spatiotemporal description by measuring positions
at a certain time or a causal description by registering momentum and energy. Using
the two in combination is ruled out by the indeterminacy relations. The bottom line
is that there are two different accounts that are essentially tied to the use of specific
apparatus. In other words, what the phenomena are is determined by how they
interact with other objects. Quantum systems are characterized by their relations
with other quantum systems [7, pp. 219–220].
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3.3 Entanglement and the EPR-Correlations

One of the chief puzzles emerging against this background is entanglement. The
philosophical challenge posed by entanglement is to understand which deeper
property of nature it reveals. It is clear what entanglement, or the EPR-correlations
at that, is not. The EPR-correlations are not produced by local preparation and
distributed subsequently by usual signaling processes. In other words, the EPR-
correlations are not brought about by common causation. It is more difficult to say
how they are fashioned alternatively. It is helpful for any such venture to heed a
distinction introduced by Jon Jarrett in 1983. John Bell’s locality condition attempts
to capture the intuition that the measurement results in each of the two correlated
wings of an EPR-experiment depends only on the local circumstances. The empiri-
cal violation of this condition shows that quantum mechanics is non-local. However,
it conduces to clarity to split this condition up into two. The distinction Jarrett
drew is now mostly called “parameter independence” and “outcome independence.”
Parameter independence is intended to express the independence of a measurement
result in one wing of an EPR-setup from the selection of the observable to be
measured in the other wing. Outcome independence means the independence of
a measurement result in one wing from the result obtained in the other wing. These
two independence claims are sufficient for deriving Bell’s theorem. This conceptual
analysis suggests that the violation of Bell’s theorem means that at least one of these
claims needs to go. Parameter independence is satisfied in quantum mechanics while
outcome independence is violated.

The philosophical impact comes out more clearly if Jarrett’s two conditions
are further sharpened by conceptual analysis. Parameter independence means that
the measurement results in one wing are stochastically independent from the
experimental setup at the second wing. This property is a consequence of special
relativity and says that the state of a system is unaffected by events in spacelike
regions. Accordingly, parameter independence captures a locality condition that
is more specific than Bell-locality and entails that any causal influence spreads at
most with the speed of light. Second, as Don Howard has pointed out, outcome
independence is equivalent to saying that each of the two EPR-correlated systems
has its own physical state and that the joint state is the product of these separate
states. In other words, outcome independence is equivalent to the separability of the
two systems. Jarrett’s result can now be rephrased to the effect that any theory that
satisfies locality and separability in this sense is in conformity with Bell’s theorem. It
follows from the violation of this theorem that one of these conditions must be given
up. In fact, quantum mechanics denies separability by abandoning factorizability.
In entangled states, it is the composite state that is primary since it cannot be
neatly divided into two states that unambiguously pertain to the partial systems.
Rather, superpositions between these partial states obtain that do not belong to either
part and rather belong to both simultaneously. The formal treatment in quantum
mechanics agrees with the experimental results in that quantum mechanics assumes
physical states that are local, but non-separable [16, pp. 226–228].
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It is striking that Einstein in his 1948 presentation of the EPR argument
proceeded precisely along these lines. Einstein was not happy with the 1935 EPR
paper. He thought that it buried the chief message by erudition. The approach he
sketched in 1948, 13 years after the initial publication,had been, for all we know,
the nucleus of the earlier EPR argument, that had been transformed and altered
by Boris Podolsky and Nathan Rosen. This original Einsteinian thought involved
the demonstration that the EPR-correlations meant either a violation of locality
in the sense of limited speed of causal propagation or separability in the sense
of factorizability or both. Einstein spoke of “Nahewirkung” and “Trennbarkeit.”
Yet Einstein thought that both conditions were prerequisites for doing science
so that none of them could possibly be given up. In particular, he argued that
separability is necessary for individuating systems and believed that individuation
is a presupposition of testability. Individuating systems is necessary for testing,
since testing presupposes the assigning of some property to a system. Without
individuation, each property could only be assigned to the whole universe. Since
Einstein believed that the spatiotemporal interval is the only objective basis for
individuation, he took separability as imperative for testing theories. Yet he also
thought that locality is necessary for securing the existence of closed systems.
Closed systems are indispensable for testing as well. Otherwise, any discrepancy
between theory and evidence could always be attributed to a distant, instantaneous
influence [12, 15, 16].

Einstein’s conclusion in his 1948 paper was that quantum mechanics is not in
accordance with at least one of these two essential requirements, and he challenged
the physics community by demanding a stark choice: either adhere to quantum
mechanics in its present shape and give up separability or hold fast to separability
and grant that quantum mechanics is incomplete. That is, the distant correlations
are fixed by additional states in the quantum systems involved, but unknown to and
unrecognized by quantum mechanics. In other words, Einstein opted for a local
hidden variable theory [12]. We know today that this is of no avail. Today, the most
prominent way out of this Einsteinian quandary is jettisoning separability.

But what does it mean to give up separability? Abandoning separability is
tantamount to accepting entanglement as a basic trait of nature. If a quantum system
consists of various parts, it is the total state that is primary. Two entangled electrons
may have a definite total spin value in each direction, but no one of the two electrons
has a definite spin value in itself in any direction. The components stand in a
certain relation, but the total state of the composite system cannot be derived from
the non-relational properties of these components. In contrast to classical objects,
quantum objects are not characterized by intrinsic properties but by being part of
more comprehensive systems. In other words, total states cannot be traced back to
properties that the parts possess independently of each other; total states are not
produced by an interaction among the parts. Rather, the parts are only created by an
intervention in or outside interaction with the comprehensive system. In entangled
systems, no such parts are realized. This is the precise opposite of separability ([13,
p. 5657]; [3, pp. 129–130]).
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This feature can be interpreted in ontological terms as suggesting a holist picture
of nature. Holism involves the primacy of the whole over its parts. In entangled
systems, the total state determines the properties of the parts, while the reverse
is not true. The violation of Bell’s inequalities demonstrates that locally prepared
properties of the parts are insufficient for fixing the total state. The correlations
are so strong that they cannot be produced by the pre-established properties of the
parts. Yet the correlations are generated by the total quantum state ([17, pp. 15–16];
[13, pp. 77–78]). This involves a reversal of traditional mereological supervenience.
The latter notion suggests that the properties of the parts define the properties
of the whole. This is expressed by the condition that there is no change in the
composite system without an accompanying change in at least one of the parts.
Further, supervenience entails that the converse is not true. It is considered well
possible that the properties of the parts change while the traits of the whole remain
invariant. This feature is usually called multiple realization; it means that the same
effect can be produced by different means [17]. Take statistical mechanics: the
same macroscopic or thermodynamic properties can be brought about by different
distributions of the relevant molecules across the pertinent configuration space. This
is precisely the contrary of what quantum theory entails. Quantum holism means a
primacy of the whole over its parts, and this is an asymmetric relation. Classical
thought, by contrast, is governed by the inverse primacy of the parts over the whole.

Entanglement has become part of many attempts to capture the structure of
reality on the basis of physical theory. In this vein, entanglement is sometimes
included in the arguments for structural realism. As I mentioned in Sect. 3.2,
structural realism takes relations to be the stuff of which reality is made. Yet I
wonder whether entanglement really fits well with such a structuralist approach.
Entanglement produces a sort of union of the two original states that cannot be split
up into two separate quantum systems. After all, this is what the loss of separability
means in this context. Entangled states are undivided wholes that do not consist of
interacting objects. The total system is the basic entity. Yet this holism does not
seem to square well with structural realism and its emphasis on relations rather
than intrinsic properties. Holism is usually thought to be tantamount to a relational
interpretation of reality. But such a relational interpretation says that the parts are
tied to each other by relations that do not hook up with the properties that the parts
possess independently of each other. However, the fusion of initial objects into an
undivided whole suggests a more intimate connection than the relation between
parts, even if the parts are granted no separate existence and no intrinsic properties.
Accordingly, I suggest distinguishing more clearly between holism and a relationist
ontology, as supported by structural realism [7, p. 221].

I mentioned that abandoning separability is often thought to be the right way
to go. Giving up separability and endorsing holism leads to the following account
of the EPR correlations. The two wings of an EPR system do not possess definite
values of measuring quantities, such as spin. There is only one comprehensive state.
This total state is changed by registering a spin value in one wing. This change
of the total state affects the probabilities of measuring values in other parts of the
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comprehensive system. This change becomes manifest if a local interaction with a
measuring device at the other wing occurs [13, p. 69].

3.4 Puzzling Features of Entanglement

I hope these considerations have added some plausibility to the supposition that
conceptual clarification and ontological exploration provides a deeper understand-
ing of what quantum mechanics is all about. The introduction of a sharper notion
of locality and its distinction from separability suggests that, in contradistinction
to a widespread sentiment, quantum mechanics respects locality and rather parts
company with classical physics when it comes to separability. Further, and likewise
in opposition to a widely received view, the EPR-correlations do not embody a
causal interaction between the two systems at hand but rather flow from the holistic
or inseparable nature of quantum states. I take it that such reconstructions are
conducive to an improved understanding of quantum theory—in spite of the fact that
no new predictions are made. However, it also belongs to the professional duties of
philosophy to avoid glossing over difficulties and to prevent premature agreement.
Philosophy is called upon to confess its confusion, to produce taumazein, and to
insist that certain notions or ideas are still obscure.

Regarding entanglement, two such murky spots can be identified. The first one is
connected to the question how the EPR-correlations can be understood. A prominent
notion of understanding emphasizes causal processes. We understand a phenomenon
if we know how it is brought about [21]. Along such lines, James Cushing argues
that understanding a physical process must always rely on a mechanism or process
that can be pictured. Yet the two major roads to a causal explanation of the EPR-
correlations are blocked: neither can they be accounted for by a direct causal link,
nor can they be traced back to common causation. So we need to face the possibility
that quantum theory represents the “endgame for understanding” [9]. It is to be
granted that we don’t have the faintest idea as to how the EPR-correlations come
about. There is no causal mechanism that could produce such correlations. However,
there are other modes of producing understanding, and the challenge is to explore
whether other avenues might be suitable for providing a non-causal understanding.
The trouble is that a simple appeal to holism is of no help. Holism operates with
extended wholes as primitive states that are destroyed if they are divided. It is in
virtue of their extended nature that distant states look as if they were adjusted by
instantaneous action at a distance. Yet, the extended total state changes if some
local alterations are performed. Two entangled electrons do not possess spin values
separately, and this is why a measurement performed at one electron changes the
total state and thereby the probability distributions of spin values measured at
the other electron [13, p. 69]. Yet it is difficult to make sense of this non-causal
instantaneous adjustment over arbitrary distances. Introducing relational states go
some way in the desired direction. If an electron is moved by 1 m, the distance of
a second electron to the one moved has increased as well. The problem is not that
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the relational properties of an object may change without intervening in this object.
The trouble rather is that these changes also extend to relations that this untouched
object bears to further objects such as measuring devices. Such puzzling features
are responsible for the lack of any idea of a mechanism that could underlie the EPR-
correlations.

Yet it is not written in stone that all explanation needs mechanisms. Explaining
phenomena by appeal to conservation laws is a traditional avenue for producing
understanding. Such pathways to understanding are captured by the unificatory
account of understanding, advocated, among others, by Philip Kitcher. Under-
standing is produced by realizing that a variety of seemingly different phenomena
instantiate a common explanatory pattern [20]. There is no doubt that entanglement
serves to unify a variety of different effects and produces understanding in this sense.
Yet another notion of understanding conforms well to the quantum mechanical
practice of giving explanations. On the “contextual approach” entertained by Henk
de Regt and Denis Dieks [10], understanding is the ability to apply scientific
conceptions properly and to see their full implications. Understanding helps us
recognize qualitatively characteristic consequences of a theory and thus facilitates
the construction of test opportunities for this theory. This approach takes up Richard
Feynman’s quip that he understands an equation if he knows what the solutions are
like without actually solving it.

One thing is worth emphasizing, when the nature of understanding is at issue.
Understanding is in no way necessarily tied to familiarity. Exploring the kind of
understanding that quantum mechanics can provide ought not to be abused for
insisting on bringing back pictures and models familiar from classical physics.
Quantum phenomena and processes are different from classical ones. Nature
behaves in an unaccustomed way in the quantum realm, and philosophy can do
nothing about it. The challenge is different: we want to realize how the different
aspects of quantum phenomena hang together. We want to produce a coherent
picture that expounds interconnections between the quantum phenomena in an
orderly way and thus allows us to make sense of them—even if some premises and
principles need to be granted that look foreign from the macroscopic point of view.

As a result, quantum mechanics is not in need of justifying the introduction of
unfamiliar properties, such as relational or holistic ones. Fundamental properties
can never be explained; this is what makes them fundamental. The principle of
inertia was met with amazement in the seventeenth century, and it would not have
been a legitimate question to ask René Descartes (who conceived rectilinear inertial
motion) why bodies that are free of external influences continue to move uniformly.
Alternatively, a legitimate question is what the basic states that a theory introduces
and appeals to are like, and how the theory proceeds from these pure states to
more complex ones that are subject to experience. Inertial motion is a basic state
in classical mechanics, relational states and holistic properties are basic entities in
quantum mechanics. The requirement only is to produce a coherent account on such
grounds.
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Another puzzling feature is the relation between the EPR-correlations and special
relativity theory. It goes without saying that there is no formal contradiction
between the two since no information can be transmitted by taking advantage of
the correlations. Light rays remain the fastest signal. This is why Abner Shimony
characterized the relationship between these two established parts of scientific
knowledge as a “peaceful coexistence” [22]. However, on closer inspection this
is not that obvious. The trouble is that the EPR-correlations (to all appearances)
establish an instantaneous relationship between events located at arbitrary distances.
But this suggests that quantum mechanical non-separability introduces a relation
of absolute simultaneity. The correlations obtained between distant measurements
seem to be simultaneous in a frame-independent sense; they seem to be located at a
preferred spacelike hyperplane [2].

I take it that it does not really help to stress that no information can be
transmitted along such absolute simultaneity planes. This would mean to stick to
special relativity in letter, but abandon it in spirit. On that account, the speed of
light would assume the character of a technical barrier of information transmission
while nature at more profound levels remains unfettered by such limitations. At
the level of ontology, such an account would rather resemble the one developed by
Hendrik Lorentz and Henri Poincaré rather than by Einstein. Lorentz and Poincaré
assumed absolute simultaneity, introduced an upper bound of signal transmission
as a technical constraint and derived the principle of relativity for electrodynamics.
The latter principle originated in these technical limitations, whereas at the level of
the natural processes themselves the distinction between absolute rest and absolute
motion was unscathed. By contrast, Einstein took the principle of relativity as being
engrained in the workings of nature and built a new structure of space-time on
this basis. It is not obvious whether this privileged position can be retained for
the principle of relativity if the EPR-correlations establish a relation of absolute
simultaneity behind our back, as it were.

This section is intended to show that philosophical attempts to produce additional
clarity may end up with recognizing further obstacles to clarification. Although it
may sound paradoxical, it means making progress in understanding when gaps in
understanding are identified and when challenges are elaborated that still lie ahead.

3.5 Quantum Measurement and Decoherence

The quantum measurement problem is a serious one and has haunted quantum
theory and quantum philosophy since von Neumann performed his now classic
analysis of the measurement process in 1932. Von Neumann applied quantum
mechanical principles to the system composed of the object under scrutiny and
the measuring apparatus and obtained a series of terms, some of which referred to
properties of the object, others to properties of the apparatus, and additional interfer-
ence terms that involve a superposition of both entities. Two challenges arose from
this analysis: First, quantum mechanics did not predict that any measuring value
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occurs in the first place; the measuring process gets stuck in unfolding a spectrum
of possibilities. Yet we regularly obtain a measuring value (see Sect. 3.2). Second,
the spectrum of possibilities contains superpositions of states of the object and
the device. Yet such interferences are never observed as a measurement outcome.
Accordingly, quantum mechanics is faced with a serious empirical problem or an
anomaly.

Another way to present the problem is to emphasize the conceptual incoherence
it involves. Consider a system consisting of a quantum object and a measurement
apparatus. On the first approach, the apparatus is treated as a macroscopic object and
as being subject to classical physics. The usual story runs that the apparatus serves to
reduce the quantum mechanical state description. This collapse of the wave function
makes a definite measuring value emerge (see Sect. 3.2). On the second approach,
the same situation is redescribed by construing the apparatus as a quantum object,
too, so that the composite system is subject to a quantum mechanical analysis. In
this framework, the Schrödinger evolution should continue. No collapse occurs and
no measuring value shows up. We get two different predictions depending on how
we treat the composite system. As a result, the quantum measurement problem is an
internal inconsistency of quantum theory [24, pp. 211–212].

Major progress has been made in the past decades by the development of the
decoherence approach. Decoherence exclusively proceeds from the Schrödinger
evolution. The treatment is based on nothing but ordinary quantum mechanics;
no interpretation, no additions are necessary. Decoherence takes the fact into
consideration that a measurement process does not only involve the object and
the measuring apparatus. Rather, the two are part of the larger environment and
enter into a relation with this environment. A measurement is never performed in
isolation from surrounding objects, and yet these further relations have not been
included in the traditional accounts of quantum measurements. As a result, the
environmental objects also enter into a superposition with the quantum object under
scrutiny and the measuring apparatus. Decoherence theory is able to show that these
superposed states are inaccessible to local observers. For instance, a photon hits
upon a quantum object, enters into an entangled state and moves away from the
observer. The interference terms are still there, but do not become manifest in any
measuring instrument. The superpositions are not destroyed, but they are moved
aside and do not show up anywhere. Decoherence makes interference terms vanish
not by suppressing them but by delocalizing them. The only states left pertain
unambiguously to the object or the apparatus, respectively. This is how quantum
objects assume their separate existence and their definite properties. For instance,
a quantum state appears particle-like since the continual collisions with ambient
molecules and photons amount to a series of position measurements [5, p. 296].

The decoherence approach provides an epistemological analysis by applying
quantum theory to the process of observation and measurement. In general, this is a
familiar scheme that has been subsumed under the label of “measuremental theory-
ladenness.” Physical theories are used for reconstructing the measuring process and
for showing that this process is suitable for registering and representing the quantity
at hand. As the case may be, an observation theory of this sort may coincide with
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the corresponding explanatory theory which is expected to account for the results
obtained with the instrument. Consider measuring current intensity with an old-
fashioned moving-coil galvanometer. The electromagnetic interactions that make
this device a reliable indicator of current intensity are governed by the same theory
of electromagnetism that also introduces and characterizes the notion of current
intensity. A theory that is able to figure as its own observation theory is sometimes
called “complete” [6, pp. 20–27]. The application of quantum mechanics to the
process of quantum mechanical registration, as begun by von Neumann and heavily
improved in the decoherence approach, shows that quantum mechanics is a complete
theory (if understood in a sense different from the one employed in the EPR-debate).

This advanced analysis of the measuring process brings two things to the fore.
First, the unobserved interference states are actually unobservable for a local
observer. The observable states clearly belong either to the quantum object or the
apparatus. This resolves an anomaly of quantum theory. Second, one item from this
reduced set of properties will actually show up as a measurement reading. This
resolves another anomaly of quantum theory (see Sect. 3.2). So it looks pretty clear
at first sight that decoherence gives us a solution to the measurement problem.

Yet, in fact, this claim is highly contentious. Critics object that decoherence
does not account for the transition from the superposition to one of its elements.
Decoherence does not entail the collapse of the wave function. Instead, there is
no collapse, and all the superpositions are still there—if unobservable. This is why
critics have objected that, conceptually speaking, nothing has changed regarding the
quantum measurement problem. We obtain a spectrum of options but none of these
options is actually selected and turns up as measurement outcome. This is why early
proponents of decoherence, such as H. Dieter Zeh, think that the true selection of
a measuring value demands a branching of causal histories and thus leads to the
“many-worlds interpretation.”

Other pioneers of decoherence, such as Wojciech Zurek, are more optimistic
regarding the explanatory potential of decoherence. The central questions to ask are:
what is the evidence that a collapse occurs in the first place? How do we know that
one item from the range of possible results is really picked by the measurement?
Conversely, is it possible to rule out that the superpositions are never broken up
and that the situation only looks as if a particular property emerged? Advocates
of the view that decoherence solves the measurement problem indeed claim that it
is sufficient to show that the measurement appears to disrupt superpositions. It is
sufficient to expound that the world appears classical, although it is of a quantum
nature all the way up ([24, pp. 213–215]; [5, p. 296]).

The objective of an epistemological analysis of quantum measurement is to
clarify what the demands are for considering the quantum measurement problem
settled. The decoherentist answer suggests that the problem is ill-posed in that in
reality there is no selection of a measuring value from the set of alternatives. Yet,
it looks as if one such value was selected. In this vein, the quantum measurement
problem is rather dissolved than solved. The transition from the quantum world
to the classical world, a cornerstone of the Copenhagen interpretation, does never
occur, in fact. The world is and remains thoroughly a quantum world but looks
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classical because of human limitations to getting hold of quantum states. The human
grip remains local and thus misses global interferences that extend through the
universe. Objects possess definite properties because of human epistemic frailty.
Critics demand the true emergence of classical objects.

I have tried to elaborate two questions of philosophical import in this section.
The first one concerns the issue what is, precisely, the quantum measurement
problem and what do we require considering it settled. Some critics suggest that
a solution means to show which measurement outcome actually turns up. This
seems clearly overdemanding since the quantum world may be truly indeterministic
(and was assumed to be so for quite some time). Which measuring value will
turn up may be due to genuine chance. Others insist that it needs to be shown
that one such outcome is actually selected. This is tantamount to demanding
that macroscopic objects truly possess definite properties. Most of the opponents
to the claim that decoherence solves the measurement problem take this avenue
and require that superpositions actually be destroyed (see [1]). A solution of the
measurement problem needs to demonstrate how classical objects emerge from
quantum states and how the collapse of the wave function actually proceeds.
Advocates of the decoherentist solution respond that such requirements aim at the
wrong explanandum: strictly speaking, no classical objects exist, and the attempt
to derive their existence is ill-conceived and bound to fail. Dealing appropriately
with such contentious issues obviously demands addressing conceptual questions
and the in part normative issue what the appropriate explanandum and a satisfactory
explanation is.

The second question to which philosophy may have something to contribute is
the relation between decoherence and other interpretations of quantum mechanics,
in particular, the many-worlds interpretation and the Copenhagen interpretation.
The many-worlds interpretation claims that it is complete in the sense that no
additional observation theory is needed to interpret quantum mechanical predictions
[6, pp. 94–96]. Opponents reject the inference to many worlds and maintain that
the mixture of states obtained by applying decoherence refers to different possible
outcomes of a measurement on one and the same quantum system.1 That is,
decoherence is not necessarily tied up with the many-worlds interpretation. Another
question at this juncture is the connection of decoherence to the Copenhagen
view. On the one hand, decoherence can be credited with actually deriving the
boundary between the classical and quantum areas that is pivotal for the Copenhagen
view [5, p. 297]. On the other hand, this boundary is claimed to be deceptive
and not to coincide with any demarcation in nature, which deviates from the
Copenhagen view.

1It is granted within this approach that the Born rule needs to be postulated in addition in order
to translate the quantum mechanical coefficients into relative frequencies of measurement results
whereas many-worlds champions claim to be able to derive the Born rule.
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3.6 What the Philosophical Interpretation of Quantum
Theory Can Accomplish

Philosophical analysis addresses conceptual, ontological, and epistemological
issues. Regarding conceptual analysis, the challenge is to contribute to a clarification
of the questions, to analyze the requirements of a satisfactory answer and to
suggest criteria for judging about the appropriateness of such requirements.
Consider the following example of a conceptual clarification. In the early days
of quantum mechanics, the presumption prevailed that the predictions of measuring
values involved a particular relationship to experimental devices and observers.
Consider a double-slit experiment. Only if the experiment was set up such that
no information about the trajectory of a particle could be obtained so that the
observer was prevented from telling through which of the slits the particle had
passed, interference patterns and a wavelike behavior emerged. If, by contrast, an
observer could possibly glean the particle’s path from the experiment, then the
results suggested a more localized, particle-like event. Decoherence theory has
suggested a different picture in the past years according to which this dependence
of the results on the observer is only apparent. The crucial point rather is whether
the quantum system is sufficiently isolated to avoid the occurrence of decoherence.
If the quantum system interacts with its environment, it is possible to obtain
information about what is going on in the system. Photons are emitted and allow
the observer to identify more specific features of the system. At the same time, this
interaction produces decoherence which is in turn tantamount to make entanglement
and interference terms invisible [23, p. 57]. As a result, underlying the seemingly
subjective feature whether or not information about a particle trajectory can be
obtained is the objective, process-related feature whether or not decoherence occurs
in the system. Conceptual analysis serves to identify the impact of certain premises
and principles.

Ontological reconstruction is another major field of philosophical analysis. Such
reconstruction is shaped by what kind of understanding of the world quantum
mechanics is able to supply. Different notions of understanding are invoked in the
debate about achievements of quantum theory and these notions can be clarified
by conceptual analysis. The various camps and opposing factions can be identified
more easily if a distinction between different notions of understanding is introduced.
In pragmatic or action-oriented approaches as well as in intuitive approaches,
understanding has to do with the capacity to anticipate the impact of certain
premises and principles. Understanding in this sense is connected to being able to
foresee the outcome of certain actions or assumptions. By contrast, understanding
in a coherentist sense refers to an overall account that serves to integrate the various
aspects of a situation or a theory into an articulate whole. In particular, no gaps
or lacunae distort the comprehensiveness of the picture; no murky parts leave
room for conflicting interpretations. Understanding in this coherentist sense conveys
the impression that things are marshaled in an ordered, transparent, and sensible
fashion. This does not mean to feature principles familiar from classical physics;
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the point rather is to realize how the different aspects of quantum phenomena are
connected to each other. It appears that quantum theory has managed to produce
understanding in pragmatic or intuitive respect but has some way to go to generate
understanding in coherentist respect as well.

Developing such a coherentist understanding of quantum theory is an urgent
challenge. If science is supposed to transcend the mere technical business of
anticipating future experience and is also thought to provide some sort of grasping
nature’s workings, then we need a coherent picture of what physical theory tells us
about the world. In particular, one of the relevant ambitions is to spell out the kind
of holism that quantum theory instantiates. The ambition is to develop a coherent
picture that allows us to make sense of quantum phenomena—even if some premises
and principles need to be granted that are unfamiliar from the macroscopic point of
view. The goal of fundamental research in the natural sciences is understanding
nature, and this challenge is not appropriately met by merely relating equations to
experimental results. We also want to relate the equations among themselves such
that they form a coherent whole and reciprocally support each other. This is part of
the philosophical endeavor to explore the broader consequences of physical theories
and to trace their impact on what might be called a scientific worldview.

Third, epistemological analysis. Quantum theory has been plagued by anomalies
and inconsistencies regarding the relation between the formalism and its predictions.
The relation between theory and experience has been a particularly problematic
one in this area, and many attempts to come to terms with this relation have been
criticized as being nothing but hand-waving and sloganeering.2 Yet in the past three
decades this debate has gained in prominence and maturity. Philosophical analysis
of the relationship between theoretical states and observed result in quantum theory
may provide deeper insights into the epistemic potential and limitations of scientific
research.
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Chapter 4
On the Sufficiency of the Wavefunction

Roger Colbeck and Renato Renner

4.1 Introduction

Theorem IV: Whoever endows ‰ with more meaning than is needed for computing
observable phenomena is responsible for the consequences. [1]

Physical theories allow us to make predictions about future observations from
preexisting data. For example, we may have data about the configuration C of
a collection of particles at time t0, based on which we can predict the particles’
positionsX at some later time t > t0.1 Some of our theories are deterministic, such
as classical mechanics. In this case, if C consists of a complete description of all
relevant particle positions and momenta, so that the system’s state is completely
determined, the corresponding prediction for X would be a certain one.

What about quantum theory? We could use the data C to infer the particles’
(joint) state at time t0, which may be represented as a wavefunction ‰. Then,
employing Schrödinger’s equation and the Born rule, we could establish a proba-
bility distribution overX , telling us how likely we are, at time t , to find the particles
at certain positions. However, due to the probabilistic nature of the Born rule, even
when ‰ is known to arbitrary accuracy, the corresponding prediction for X is in
general uncertain.

1We may of course also employ physical theories to infer past events, corresponding to a
retrodiction (rather than a prediction).
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The question then arises as to whether the quantum-mechanical wavefunction
‰ is “sufficient” to generate the most precise predictions. This question is closely
related to that raised in 1935 by Einstein, Podolsky, and Rosen who asked whether
the quantum-theoretic description of physical reality can be considered complete [2]
(cf. Footnote 2). A longstanding debate was initiated [3–6] that is still ongoing
today. This matter, besides its relevance for the foundations of quantum theory,
has recently gained practical importance. For example, the sufficiency of the
wavefunction is a prerequisite for standard security proofs in quantum cryptography,
or for establishing that quantum random number generators are “truly random” [7].

The aim of this chapter is to review a recent line of work [8–11] in which we
presented arguments supporting the sufficiency of the wavefunction for optimal
predictions—and hence that quantum theory is complete. More precisely, we show
that any extension of quantum theory yielding predictions that are more informative
than those based on the wavefunction necessarily has a rather undesirable feature: it
is incompatible with a natural notion of “free” choice.

The chapter is organised as follows. In Sect. 4.2 we describe the main claims
and their underlying assumptions on an informal level. We then continue with a
more formal treatment. Section 4.3 presents a simple mathematical framework that
allows us to study and compare the predictions made by different physical theories.
The notion of free choice, which is central to our considerations, is defined and
discussed in Sect. 4.4. Sections 4.5–4.9 are devoted to the mathematical formulation
and proofs of (some of) our claims, first in a basic (Sects. 4.7 and 4.8) and then in a
generalised form (Sect. 4.9). The concluding Sect. 4.10 discusses limitations of the
approach and its relation to similar results.

4.2 Overview of the Main Claims

Suppose (as above) that we would like to predict a future observation, X , based on
available data, C . Most generally, C and X may be modelled as random variables,
with joint probability distributionPCX . That the setup admits a quantum-mechanical
description means that there exists a wavefunction, ‰ (which we model as another
random variable that may be correlated withC ) such that the probability distribution
of X conditioned on ‰, PX j‰ , obeys the Born rule. For our considerations, we will
usually assume that the available data C allows us to infer the wavefunction ‰ to
arbitrary precision, so that ‰ is a function of C , i.e., ‰ D ‰.C/.

To formulate our claims, we need to compare the quantum-mechanical pre-
dictions to those obtained from possible alternative theories. For any alternative
theory, we denote by ƒ the collection of variables that it uses to describe a given
experimental setting. One may think ofƒ as a “state variable” within the alternative
theory, analogously to the wavefunction‰ in quantum theory. In our framework,ƒ
is simply a random variable, and the prediction of the alternative theory for a future
observationX corresponds to the conditional distribution PX jƒ.
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We now describe a few basic properties that an alternative theory may (or may
not) have. They play a crucial role for our considerations and will be defined more
formally in the subsequent sections.

(QM) Compatibility with Quantum Theory The alternative theory can be
applied to any quantum-mechanical experiment. More precisely, any experimental
data that admits a quantum-mechanical description (in the sense that it is compatible
with the predictions based on ‰) also admits a description using the alternative
theory (with predictions based on ƒ).

(FR) Compatibility with Free Choice If an experimental parameter can be chosen
independently of certain other values according to quantum theory, then this should
also be allowed according to the alternative theory.

(‰-S) Sufficiency of ‰ No prediction of quantum theory (based on‰) is improved
by the alternative theory (i.e., when taking into accountƒ).2

These properties are all we need to describe our main claim.

Claim 1 Properties (QM) and (FR) imply (‰-S).

It can be argued that Properties (QM) and (FR) are quite reasonable requirements
in light of experiments. Property (QM) merely demands that the alternative theory
can be used whenever quantum theory can (without contradicting it), and hence can
be considered an “extension” of quantum theory. Given that quantum theory has so
far not been falsified by any experiment, there is at least no experimental evidence
that speaks against this assumption. We also note that in a recent experiment [12],
the validity of Property (QM) has been verified to good accuracy for a particular
setup relevant to our claims. Furthermore, Property (FR) means that if, according
to quantum theory, we can choose an experimental parameter at random then this
should also be the case according to the extended theory.

Theories that satisfy Properties (QM) and (FR) may be termed free extensions of
quantum theory. Claim 1 then reads as follows.

Claim 10 The wavefunction ‰ is sufficient within any free extension of quantum
theory.

An interesting corollary of this result is that the wavefunction is determined
uniquely by the state variable ƒ of any free extension of quantum theory, provided
ƒ is sufficiently informative. To make this more precise, consider any alternative

2In previous work, we have sometimes used the term “completeness” rather than “sufficiency” to
describe Property (‰-S). The notion is indeed closely related to what Einstein, Podolsky and Rosen
(EPR) [2] called “completeness of quantum theory”. They characterised this by the requirement
that “every element of the physical reality must have a counterpart [in quantum theory]”, where
the “elements of physical reality” correspond to quantities that can be predicted with certainty.
This means that, if the prediction based on ƒ is deterministic then also the prediction based on ‰
must be deterministic. Hence, Property (‰-S) implies completeness of quantum theory according
to EPR.
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theory with state variable ƒ. The theory may have the following property, which is
the counterpart to (‰-S).

(ƒ-S) Sufficiency of ƒ No prediction of the alternative theory (based on ƒ) is
improved by quantum theory (i.e., when taking into account‰).

The corollary may now be phrased as follows.

Claim 2 Properties (QM), (FR), and (ƒ-S) imply that ‰ is determined by ƒ.

Remarkably, this claim is in some sense a converse to Claim 1. To see this, we
reformulate it analogously to Claim 10.

Claim 20 Any sufficient free extension of quantum theory contains the wavefunc-
tion ‰.

The claim is closely related to a recent result by Pusey, Barrett, and Rudolph [13],
who showed that the wavefunction ‰ is uniquely determined by the “real physical
state” of a system (and is therefore also “real”). Indeed, the same conclusion can
be obtained from Claim 2, if one interprets the “real physical state” of a system as
a variable ƒ that satisfies Properties (QM), (FR), and (ƒ-S). Further discussion on
this point is deferred to Sect. 4.10.

We conclude this introductory section by noting that Claims 10 and 20, taken
together, imply that any sufficient free extension of quantum theory is essentially
equivalent to quantum theory. More precisely, the variable ƒ, on which the
predictions of the extended theory is based, is in one-to-one correspondence with
the quantum-mechanical wavefunction‰ (up to possible redundancies).

4.3 Predictions

It should be clear from the informal description above that our approach is
operational. To illustrate this, it is useful to imagine an experimental setup where
each of the components (e.g., sources and measurement devices) is equipped with
a printer that continuously prints all relevant information (such as its configuration
or the result of a measurement) on a slip of paper. Our arguments may then be
formulated in terms of statements about the printed values. Mathematically, the
printed values are modelled as random variables, and our technical claims will refer
to their joint probability distribution.3

When we analyse a given experiment, there is usually a well-defined set of
quantities, in the following denoted by ‡ , about which we want to make statements.

3We note that there is some tension between quantum systems undergoing unitary evolution and
the existence of classical random variables describing print-outs. We take the view that random
variables are defined from the point of view of an observer and that it makes sense for an observer to
assign random variables to distant devices prior to the outcome reaching him. (See also Sect. 4.10.)
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Fig. 4.1 Basic experiment. Physical theories can be used to predict the outcome of a measurement
X based on data C . The figure shows a simple example, where X is the measurement output of
a detector at time t , and where C is the configuration of a source at some earlier time t0. For our
argument, we will often assume that this configuration is chosen at random

As a simple (but rather generic) example, consider a setup consisting of a particle
source and a detector, as depicted by Fig. 4.1. Here‡ could comprise two quantities,
C andX , whereC corresponds to a print-out of the source’s configuration at time t0,
when the particle is emitted, and X is the print-out of the detector at time t , after
the particle has interacted with it. We could then ask how well we can predict X
from C .

In general, when talking about predictions, it is convenient to distinguish between
“future” observations, which we want to predict, and “past” ones, on which our
predictions are based. This time ordering could be obtained naturally from our
operational interpretation, by associating to each value in ‡ the point in spacetime
at which it is printed. For our purposes, the exact location of the values is not
relevant, and we merely need to know their relative order in time. This motivates
the following definition.

Definition 1 A chronological structure ‡ is a set of random variables equipped
with a binary relation, denoted by !, such that4

• X ! X (reflexivity);
• X ! Y and Y ! Z imply X ! Z (transitivity).

The statement X ! Y should be interpreted as “X was printed before Y ”.
Note that two elements of ‡ may be incomparable, i.e., it could be that neither

4In mathematics, such a binary relation is called a preorder or quasiorder.
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X ! Y nor Y ! X holds. This is useful to model situations where X and Y

correspond to values observed at spacelike separated locations.5

Another concept that is central to our considerations is that of “sufficient”
information. To define this, let V andX be elements of a chronological structure‡ .

Definition 2 V is sufficient for predicting X (with respect to ‡) if

PX jV D PX jVV
#

(4.1)

holds almost surely (over the values of V; V#), where V# � fW 2 ‡ W W ! V g.

We will also use a straightforward extension of this definition, where X and V
are sets of variables from ‡ . In this case, V# is meant to consist of all variables that
lie in the past of at least one of the variables from V .

To illustrate Definition 2, let us return to our generic example (cf. Fig. 4.1) for
which the natural chronological structure comprises C ! X . Assume that the
experiment admits a quantum-theoretic description as follows. The state of the
particle emitted at time t0 is given by a wavefunction ‰ on a Hilbert space H.
Furthermore, the evolution of the particle’s state from time t0 (when it leaves the
source) to t (when it reaches the detector) is given by a unitary U on H. Finally,
the measurement carried out by the detector may be modelled by a family f…xgx2X
of projectors on H. The probability distribution PX j‰ of the measurement result X ,
conditioned on any value of the wavefunction ‰ D  , is then given by the Born
rule,6

PX j‰.xj / D h jU �…xU j i : (4.2)

To treat this quantum-mechanical description within our framework, it is con-
venient to consider extending the chronological structure ‡ to ‡QM, which
additionally includes the random variable ‰ together with the relations7

C $ ‰ (4.3)

The latter reflects that we are interested in the quantum state ‰ that the system has
at the time when C is chosen.8 That the wavefunction ‰ is sufficient for predicting

5While it is natural to use a chronological structure compatible with relativistic spacetime, we
stress that this is not necessary for our technical claims.
6Note that we do not consider more general states (described by density operators) or
measurements (described by POVMs) here—such generalised states and measurements already
have “extensions” within quantum theory as a consequence of Naimark’s theorem.
7We use C $ ‰ as a shorthand for the two relations C ! ‰ and C  ‰.
8To comply with our operational approach, one may imagine that the source, upon printing the
value C at time t0, also prints ‰.
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X w.r.t. ‡QM then corresponds to the condition

PX j‰ D PX j‰C :

Sufficiency of ‰ w.r.t. ‡QM thus means that ‰ contains all information about the
configurationC of the particle source that is relevant for predicting the measurement
outcome X .

Analogously to quantum theory, in which the predictions are based on the
wavefunction‰, an alternative theory may give predictions based on other variables,
which we collectively denote by ƒ. To study the alternative theory, we consider an
extended chronological structure ‡Ext that, in addition to the variables of ‡QM,
contains ƒ, as well as the relations C $ ƒ, generalising (4.3). Property (‰-S),
specified informally in Sect. 4.2, then corresponds to the requirement that ‰ is
sufficient for predictingX w.r.t. the extended chronological structure‡Ext (PX j‰ D
PX j‰ƒC and, in particular, PX j‰ D PX j‰ƒ). Similarly, Property (ƒ-S) means that ƒ
is sufficient for predicting X w.r.t. ‡Ext (in particular, PX jƒ D PX jƒ‰).

4.4 Free Choice

It is difficult to imagine talking about physics without free choice. It is a notion
that finds itself embedded within the usual language we use to describe physical
scenarios. We ask questions of the form “What would happen if . . . ” and reason
about the consequences. For example, we may ask what peak altitude a ball obtains
if we throw it at different angles and speeds. Clearly, this is only meaningful under
the premise that it is possible to set up, at least in principle, the different scenarios
in question.

Thus, free choice is a property of the way we describe the world, with an
interventionist picture. We would not find a theory satisfying if it were unable to
compute the future evolution for certain choices of the initial conditions. Sometimes
free choice has been called a no-conspiracy assumption, the idea being that if free
choice were not to hold—i.e., were it impossible to set up a particular scenario—it
would be a conspiracy on the part of nature preventing certain experiments being
performed in certain situations.

The concept of free choice also plays an important role for the formulation of
our main claims. We view it as a property of a theory, capturing the idea that certain
parameters of the theory can be chosen independently. While, as argued above, any
(reasonable) physical theory should have this property (in some form), it is usually
not described explicitly. One of the notable exceptions is the work of Bell [14], who
characterised the “free” variables of a theory as follows:

For me this means that the values of such variables have implications only in their future
light cones.
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The definition we use here (Definition 3 below) may be seen as a formal version
of this criterion. Although some bespoke definitions have been used in particular
scenarios, as far as we are aware, no other consistent criterion has been proposed in
the literature that is applicable to a general scenario (see also [15] for a discussion).9

Consider, once again, our generic setting consisting of a particle source and a
detector (cf. Fig. 4.1). Suppose that the source has a knob that allows selection
among a set of possible configurations, and that, at time t0, its setting C is
determined by a random number generator. Note that C may determine the
properties of the emitted particle, which could in turn influence the detector output
X obtained at time t . Hence, despite C being chosen “freely” at random, it will
in general be correlated with X . Crucially, however, C can only be correlated with
things generated after it is chosen, and if X was obtained at a time t < t0, before C
is randomly generated, we would expect them to be independent, i.e.,10

PCX D PC � PX : (4.4)

This motivates the following definition. Let ‡ be a chronological structure that
contains C as an element.

Definition 3 C is free (with respect to ‡) if

PCC
6 "

D PC � PC
6 "

(4.5)

where C
6" � fX 2 ‡ W C 6! Xg.

In words, C is free if it is statistically independent of all other variables in ‡ ,
except those that lie in its future.

Note that because in general the chronological structure contains incomparable
elements,C

6" is a larger set of variables than those that lie in the past (see Fig. 4.2 for
examples). One may therefore wonder whether a weakened variant of Definition 3,
where C

6" was replaced by the set C# D fX 2 ‡ W X ! C g, would be sensible,
i.e., whether the independence criterion (4.5) could be replaced by

PCC
#

D PC � PC
#
: (4.6)

To illustrate that it cannot, consider a set ‡ consisting of two variables, C and C 0,
and assume that their chronological structure is trivial, i.e., C 6! C 0 and C 0 6! C .

9The definitions given in the literature usually refer to specific scenarios, e.g., where the measure-
ments applied to a fixed initial state are chosen freely. However, it is unclear how to generalise
these definitions, for instance, to the case where the initial state may also be chosen freely. Indeed,
while these definitions ensure that a freely chosen measurement setting is independent of certain
hidden variables (such as the particle positions according to Bohmian mechanics), this requirement
would make little sense for the free choice of an initial state.
10In relativistic spacetime, we would expect the independence condition (4.4) to be satisfied
whenever t < t0 holds in some inertial frame.
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Fig. 4.2 Two examples of a
chronological structure. In
(a), F being free implies
PF jEG D PF , while in (b), if
A is free then PAjBYZ D PA,
for example

H

GE

F

A

Z

B

YX
a

b

Specifically, one may imagine that C and C 0 correspond to the configuration of two
distant devices, and that C and C 0 are chosen simultaneously at time t0 (w.r.t. some
inertial frame) by two experimentalists sitting next to the devices. Suppose that we
ask the two experimentalists to choose the respective configurations at random, but
that we later find that C and C 0 are perfectly correlated. Then it would be natural
to conclude that (at least) one of the choices was not “free” (for any reasonable
interpretation of this term). Indeed, neither C nor C 0 meet the requirement of
Definition 3, which demands that PCC0 D PC � PC 0 . Nevertheless, both C and
C 0 would meet criterion (4.6), because C# is the empty set. This weaker criterion is
therefore not sufficient for characterising free variables.

We also note that, although Definition 3 refers to probability distributions, it is
equally applicable to deterministic theories. For example, we may use classical
mechanics to compute the trajectory of a particle even if its initial conditions,
C , were chosen using a random number generator. As long as we only use the
output of the random number generator, but do not require that its internal workings
be described within classical mechanics, we can safely consider a chronological
structure that does not include any variables correlated to C that lie in its past.
Hence, C could still be considered free according to Definition 3.

4.5 Bipartite Measurement Scenario

To formulate our Claims 1 and 2 on a technical level, we will refer to a particular
experimental setup, similar to the one considered by Einstein et al. [2] and by
Bell [3]. It consists of a source, which we call Charlie, and two detectors, called
Alice and Bob, arranged symmetrically around Charlie (see Fig. 4.3). Charlie emits
a signal (e.g., a photon pulse) at time t0. Later, at time t when the signal reaches
Alice and Bob, they carry out measurements, whose outcomes we denote by X
and Y , respectively. Furthermore, each of the devices is equipped with a knob to
choose between different configurations, and the knobs are set using random number
generators at time t0.

The experiment may be described within the framework introduced above.
For this, we consider a chronological structure ‡ (cf. Fig. 4.4) that contains the
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Fig. 4.3 Bipartite measurement scenario. A source, Charlie, sends signals to detectors, Alice and
Bob. The configurations A, B , and C of the detectors and the source are randomly chosen at time
t0, and the detectors yield measurement outcomes X and Y at time t . Under the condition that
c.t � t0/ is smaller than the distance between Alice and Bob, the two measurement processes are
spacelike separated

Fig. 4.4 Bipartite chronological structure. The bipartite chronological structure ‡ consists of all
values relevant to the bipartite measurement scenario depicted in Fig. 4.3. The properties we need
for our statements are (4.7) and (4.8); the relations C ! A and C ! B may or may not hold

random variables C , A, B , X , and Y , corresponding to the knob settings and
measurement outcomes. ‡ is equipped with the relations

A ! X; B ! Y; C ! X; C ! Y ; (4.7)

which reflect the fact that C and A are chosen before outcome X is obtained, and
that C and B are chosen before outcome Y is obtained. Furthermore, we will use
that

A 6! Y; B 6! X ; (4.8)



4 On the Sufficiency of the Wavefunction 75

i.e., there is no definite time-ordering between the two measurements by Alice and
Bob. One may think of the devices being located far enough apart that the two
measurement processes are spacelike separated. In the following we will refer to
this particular‡ as the bipartite chronological structure.

Note that we have, up to this point, not said anything about the probability
distribution of the random variables of ‡ . To specify this distribution, we will from
now assume that the experiment admits a particular description within quantum
theory. More precisely, we assume that the state of the signal emitted at time t0
is given by a wavefunction ‰, i.e., a unit vector in a Hilbert space H, which may
depend on C . Furthermore, for any possible knob setting A D a, the measurement
carried out by Alice at time t is represented by a family f…a

xgx2X of projectors on a
Hilbert space H with

P
x …

a
x D idH. Similarly, for any B D b, Bob’s measurement

is given by a family f…b
ygy2Y of projectors on H0. Finally, we assume that the

evolution of the system from time t0 to time t corresponds to an isometry U from
H to H ˝ H0. We can then apply the Born rule, according to which the conditional
probability distribution PXYjAB‰ is given by

PXYjAB‰.x; yja; b;  / D h jU �.…a
x ˝…b

y/U j i : (4.9)

As in Sect. 4.3 [see the text around Eq. (4.3)], we denote by ‡QM the chronological
structure obtained by adding ‰ to ‡ , together with the relations C $ ‰ (cf.
Fig. 4.5).

The variables defined within the bipartite measurement scenario have natural
properties w.r.t. the chronological structure ‡QM: the wavefunction ‰ is sufficient
for predictions within quantum theory (Remark 1), and A, B , and C can be chosen
freely (Remark 2). These properties hold under the assumption that the Born
rule (4.9) is valid conditioned on any value of the source configuration C , i.e.,

PXYjAB‰C D PXYjAB‰ : (4.10)

Fig. 4.5 Extended bipartite chronological structure. The bipartite chronological structure ‡

(see Fig. 4.4) may be supplemented with additional random variables. We denote by ‡QM the
chronological structure that includes the wavefunction ‰, and by ‡Ext the one that also contains
the state variable ƒ of an extended theory
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Because ‰ may depend arbitrarily on C , this assumption is fulfilled whenever the
experiment admits a quantum-mechanical description.

Remark 1 f‰;A;Bg is sufficient for predicting fX; Y g w.r.t. ‡QM. In particular, ‰
is sufficient for predicting X and Y conditioned on any A D a and B D b.

Proof By the definition of sufficiency (cf. Definition 2 as well as the extension
described thereafter) and because f‰;A;Bg# D fC g the claim is equivalent
to (4.10). ut

Note that sufficiency of ‰ w.r.t. ‡QM is a strictly weaker condition than
Property ‰S introduced in Sect. 4.2. The latter corresponds to the requirement
that ‰ is not only sufficient w.r.t. ‡QM, but also w.r.t. any extended chronological
structure, denoted ‡Ext, which may include additional variables defined within an
alternative theory (see Fig. 4.5). Proving this stronger sufficiency condition (‰-S) is
one of the main aims of this chapter (cf. Claim 1).

Before stating the next property, we remark that quantum theory does not
prescribe how A, B , and C are chosen. We may thus, in particular, choose A and B
independently of C and ‰, i.e., such that

PABC‰ D PA � PB � PC‰ : (4.11)

Remark 2 A, B , and C are free w.r.t. ‡QM whenever they are chosen according
to (4.11).

Proof That C is free follows directly from the fact that C
6" can only contain A

and B , and that PABC D PAB � PC , according to (4.11). Furthermore, we have
A

6" D fB;C;‰; Y g. Hence, to verify that A is free it suffices to check the condition

PABC‰Y D PA � PBC‰Y : (4.12)

But using (4.9), (4.10), and
P

x …
a
x D idH we find that

PY jABC‰.yja; b; c;  / D
X

x

PXYjABC‰.x; yja; b; c;  /

D
X

x

h jU �.…a
x ˝…b

y/U j i

D h‰jU �.idH ˝…b
y/U j‰i :

Since the right hand side is independent of A D a, we conclude that PY jABC‰ D
PY jBC‰ . Furthermore, (4.11) implies that PBC‰jA D PBC‰. We thus find that
PYBC‰jA D PY jABC‰PBC‰jA D PY jBC‰PBC‰ is independent of A D a, which
proves (4.12). That B is free follows by symmetry. ut
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Remark 2 explains our formulation of Property (FR) given in Sect. 4.2. There we
refer to the variables that can be chosen freely within quantum theory. Following
Remark 2, these include A, B , and C . Property (FR) demands that these can also
be chosen freely within an alternative theory. Technically, this means that A, B ,
and C should not only be free w.r.t. ‡QM, but also w.r.t. the extended chronological
structure, ‡Ext, which includes all variables used by the alternative theory.

We conclude this section with the remark that the bipartite nature of the
chronological structure, in particular condition (4.8), is crucial for the formulation
of our technical claims and for their operational interpretation. For example, if we
used a chronological structure that includes the relations A $ B , the assumption
that A and B are free (w.r.t. this structure) would not suffice to guarantee that they
are uncorrelated.

4.6 Free Choice and Local Causality

The notion of “local causality”, introduced formally by Bell [16], captures the idea
that physical influences propagate continuously in spacetime. It is implicitly used
in Einstein, Podolsky, and Rosen’s argument [2], and it is an assumption of Bell’s
theorem, which asserts that quantum correlations cannot be reproduced by a realistic
model [3]. While our claims do not rely on this assumption, there is a connection
between local causality and the concept of free choice, as defined in Sect. 4.4. In the
following we briefly discuss this.11 In addition, note that Lemma 1 will play a role
in the proof of our main claims.

Consider the bipartite measurement scenario described in Sect. 4.5 and let ‡ be
the bipartite chronological structure, which consists of the choices A, B , and C as
well as the measurement outcomes X and Y (cf. Fig. 4.4). Bell argued that, if the
latter are correlated then they must have a common cause that lies in their past. We
may model this common cause by an additional variable ƒ, which is added to ‡ ,
together with the relations

ƒ ! X; ƒ ! Y : (4.13)

The latter reflect the idea that ƒ is in the common past of X and Y . The
resulting extended chronological structure then corresponds to ‡Ext defined above
(cf. Fig. 4.5).12

Local causality demands that, given the information in the past of a measurement,
there is no other information that can be correlated to the outcome. Applied to the

11For a general discussion of local causality we refer to [17].
12In this section we don’t make reference to the variables C and ‰ (which are also part of ‡Ext).
However, one may include them by replacing ƒ with the triple .ƒ; C;‰/.
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two measurements in our scenario, this criterion corresponds to the conditions

PX jABYƒ D PX jAƒ and PY jABXƒ D PY jBƒ : (4.14)

Note that these imply

PX jABƒ D PX jAƒ and PY jABƒ D PY jBƒ ; (4.15)

as well as

PX jABYƒ D PX jABƒ and PY jABXƒ D PY jABƒ : (4.16)

The term “parameter independence” is often used for the conditions (4.15), while
“outcome independence” is used for (4.16).13 Bell’s theorem can be summarised as
saying that quantum theory is incompatible with local causality and free choice in
the bipartite measurement scenario [6]. We discuss how this follows from our result
in Sect. 4.10.

It turns out that, in this scenario, parameter independence (4.15) is implied by
free choice w.r.t. the bipartite chronological structure.14 This follows directly from
Lemma 1 below. Local causality and free choice are thus connected in that both
have parameter independence as a consequence.

Lemma 1 If A and B are free w.r.t. ‡Ext then PXƒjAB D PXƒjA and PYƒjAB D
PYƒjB (wherever these conditional distributions are defined).

Proof The distribution PXƒAB can be decomposed as

PXƒAB D PXƒjABPAPBjA
PXƒAB D PXƒjAPAPBjXƒA :

By definition, if B is free then PBjAƒX D PB . This implies that the last factors on
the right hand side of the two equalities, PBjA and PBjXƒA, are equal. Since the left
hand side is also equal, we find PXƒjAB D PXƒjA as desired. The second part of the
claim follows by symmetry. ut

Although this argument shows that free choice implies parameter indepen-
dence (4.15), it does not imply outcome independence (4.16), and hence is strictly
weaker than local causality. Indeed, while “plain” quantum theory (where the
common causeƒ consists only of the wavefunction‰) is perfectly compatible with

13Parameter independence (4.15) is also related to “no-signalling” in the sense that if Bob (for
example) has access to ƒ then the condition PY jABƒ D PY jBƒ follows from the assumption that
Alice cannot signal to Bob by choosing different values for A.
14We do not have a general definition of parameter independence, hence we speak only of the
bipartite scenario here.
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free choices (see Remark 2), it violates outcome independence.15 This also points to
an important difference between the usual formulation of Bell’s theorem [6] (as well
as similar results, such as Leggett’s theorem [18]) and Claim 1. The assumptions of
the latter (in particular freedom of choice) are perfectly compatible with quantum
theory. In contrast, Bell’s theorem is based on local causality, so that plain quantum
theory is already excluded by assumption.

In general, if a particular theory violates outcome independence (4.16), this need
not imply that no locally causal explanation exists. Instead, the violation could be
due to the insufficiency of ƒ, i.e., there could be correlations between X and Y
beyond those mediated byƒ. If so, one possibility is that introduction of additional
variables restores outcome independence. However, in the case of quantum theory,
Bell’s theorem implies that no such additional variables can exist.

We also note that certain “non-local” extensions of quantum theory violate the
parameter independence conditions (4.15). This is for example the case for Bohmian
mechanics, if we include the hidden particle positions in the variable ƒ. For these
theories, it follows directly from Lemma 1 that they cannot be compatible with free
choice w.r.t. the bipartite chronological structure.

Possibly due to such considerations, the definition of free choice we use has
sometimes been mistaken for a locality assumption. However, as explained above,
it is strictly weaker than local causality. Indeed, because the free choice assumption
is satisfied by plain quantum theory, it may be motivated by experimental observa-
tions: in our bipartite measurement scenario, for example, one would always find
that the statistics obeys the condition PX jAB D PX jA. Furthermore, this observation
holds whether or not the measurements are spacelike separated. This motivates
taking this as a feature of an alternative theory, the rationale being that it would
be strange if PX jABƒ were not equal to PX jAƒ, but that averaging overƒ happens in
just the right way to ensure PX jAB D PX jA.

4.7 Basic Claims

The goal of this section is to provide formal versions of Claims 1 and 2 (cf.
Sect. 4.2). For this, we consider the bipartite measurement scenario described in
Sect. 4.5, for specific choices of states prepared by the source and measurements
carried out by the detectors.

Let H and H0 be d -dimensional Hilbert spaces with orthonormal bases fjzigz2Œd �,
where Œd � D f0; : : : ; d � 1g. Let  d be an arbitrary state on H and let U be an

15The outcomes X and Y of a measurement on an entangled state ‰ are generally correlated and
thus violate outcome independence (4.16) for ƒ D ‰.
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isometry from H to H ˝ H0 such that

U j d i D p
1=d
X

z2Œd �
jzi ˝ jzi 2 H ˝ H0 : (4.17)

We denote by OXd D P
z2Œd � jzihz ˚ 1j the generalised Pauli operator (where ˚

means addition modulo d ). For any n 2 N and for any rational values16 a; b 2
Œ0; 1�Q � Œ0; 1� \ Q we define the families of projectors f…a

xgx2Œd � on H and
f…b

ygy2Œd � on H0 by

…a
x D . OXd/a jxihxj . OX�

d /
a (4.18)

…b
y D . OXd/b jyihyj . OX�

d /
b : (4.19)

Finally, let‡Ext be the extended bipartite chronological structure defined in Sect. 4.5
(see Fig. 4.5), with random variables A, B , C , X , Y , ƒ, and ‰.

Theorem 1 below is a formal version of Claim 1. This version is however
restricted, as it applies only to local measurements on the particular state defined
by (4.17). Later, in Sect. 4.9, we will provide a generalisation of the theorem to
arbitrary measurements on arbitrary states.

Theorem 1 (Restricted Version) If

• (QM) conditioned on ‰ D  d , the Born rule (4.9) holds;
• (FR) A and B are free (w.r.t. ‡Ext) and their support contains Œ0; 1�Q

then, conditioned on A D 0 and ‰ D  d ,

• (‰-S) ‰ is sufficient for predicting X (w.r.t. ‡Ext).

Claim 2 can be obtained as a corollary from this theorem. We first provide a
restricted version where the wavefunction ‰ is chosen from a set of two different
wavefunctions,  d and  r , both of which satisfy (4.17) for the same, appropriately
chosen isometry U .

Corollary 1 (Restricted Version) Assume that ‰ takes values only from the set
f d ; rg for some r; d 2 N, with r < d . If

• (QM) the Born rule (4.9) holds;
• (FR) A and B are free (w.r.t. ‡Ext) and their support contains Œ0; 1�Q;
• (ƒ-S) conditioned on A D 0, ƒ is sufficient for predicting X (w.r.t. ‡Ext)

then there exists a function f such that f .ƒ/ D ‰ holds almost surely.

Note that for any two wavefunctions  d and  r on H with overlap
h d j ri D p

r=d there exists an isometry U such that (4.17) holds for both d

16We restrict to the set of rational values since these are the only ones required for the proof.
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and r . Since, in addition, d and r can be any positive integers, Corollary 1 is
applicable to any two wavefunctions whose overlap is the square root of a rational
number. In Sect. 4.9 we will provide a more general version of the corollary which
extends the claim to any countable set of wavefunctions.

4.8 Proof of the Basic Claims

In this section we give an overview of the proofs of Theorem 1 and Corollary 1. For
more details, we refer to [9] and [19]. The argument uses the idea of “non-signalling
correlations”, which we explain first.

Let d; n 2 N, let X and Y be random variables that take values from
the set Œd � D f0; 1; : : : ; d � 1g, and suppose that A and B take values A 2
An � f0; 2

2n
; : : : ; 2n�2

2n
g and B 2 Bn � f 1

2n
; 3
2n
; : : : ; 2n�1

2n
g. Define the quantity

In;d .PXYjAB/, a function of the conditional distribution PXYjAB, as follows

In;d .PXYjAB/ � P.X ˚ 1 ¤ Y jA D 0; B D 2n�1
2n
/

C
X

a;b
ja�bjD1=2n

P.X ¤ Y jA D a;B D b/ ;

where the addition ˚ is modulo d , and where

P.X ¤ Y jA D a;B D b/ � 1 �
X

x

PXYjAB.x; xja; b/ :

The quantity In;d is an extension of a quantity used to formulate chained Bell
inequalities [20, 21]. That a large violation of these implies low correlation with
other variables was first shown in [22], where it was used for a novel key distribution
scheme.

Consider an arbitrary additional random variable ƒ. As we shall see (Lemma 2
below), if PXYƒjAB satisfies the non-signalling conditions17

PXƒjAB D PXƒjA and PYƒjAB D PYƒjB (4.20)

then the value of In;d .PXYjAB/ gives an upper bound on the maximum information
that ƒ can provide about X (or Y ). Note that In;d is a function of the distribution
withoutƒ, so can be estimated from the correlations between X and Y even if ƒ is
unknown.

17Whereas the proof does of course not depend on the interpretation of these conditions, we note
that the term “non-signalling” originates from the operational meaning described in Footnote 13.
Alternatively, the conditions could be interpreted as mirroring an analogous property of the
wavefunction ‰ (namely PX‰jAB D PX‰jA) to the variable ƒ.
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To illustrate the idea behind the proof of Lemma 2, let d D n D 2 and consider
the distribution PXYjAB D P NL

XYjAB, known as the “non-local box distribution” [23,
24], defined by

P NL
XYjAB.x; yja; b/ D

(
1=2ıx;y if .a; b/ 2 f.0; 1

4
/; . 2

4
; 1
4
/; . 2

4
; 3
4
/g

1=2ıx;1˚y if .a; b/ D .0; 3
4
/:

The distribution satisfies

P.X ¤ Y j0; 1
4
/ D P.X ¤ Y j 2

4
; 1
4
/ D P.X ¤ Y j 2

4
; 3
4
/ D P.X D Y j0; 3

4
/ D 0 ;

which is equivalent to I2;2.P NL
XYjAB/ D 0. Now let ƒ be such that the non-signalling

conditions (4.20) hold and let Z D Z.ƒ/ be an arbitrary binary value computed
from ƒ (one may think of Z as a guess for X ). We then have PXZjAB D PXZjA and
PYZjAB D PYZjB . Using this, we find

P.Z D X jA D 0; B D 3
4
/ D

X

z

PXZjAB.z; zj0; 34 / D
X

z

PXZjAB.z; zj0; 14 /

D
X

z

PYZjAB.z; zj0; 14 / D
X

z

PYZjAB.z; zj 24 ; 14 /

D
X

z

PXZjAB.z; zj 24 ; 14 / D
X

z

PXZjAB.z; zj 24 ; 34 /

D
X

z

PYZjAB.z; zj 24 ; 34 / D
X

z

PYZjAB.z; zj0; 34 /

D
X

z

PXZjAB.1˚ z; zj0; 3
4
/ D P.Z ¤ X jA D 0; B D 3

4
/

D 1 � P.Z D X jA D 0; B D 3
4
/ :

The equality implies that P.Z D X jA D 0; B D 3
4
/ D 1=2.18 This implies that Z

is uncorrelated to X . Since Z is an arbitrary function of ƒ, the same holds for ƒ,
that is, ƒ cannot be used to predict X .

Although this is for a specific case, there is a general connection between In;d
and the ability to make improved predictions. The latter is measured in terms of the
distance between the conditional distribution PXƒja � PXƒjA.�; �ja/ and the product
distribution NPX �Pƒja , where NPX is the uniform distribution. The following lemma,
whose proof can be found in [11], provides an upper bound on this distance.19

18An analogous argument works for any a and b, so P.Z D X jA D a; B D b/ D 1=2.
19Note that for two distributions, PX and QX , defined on a set X , kPX � QXk1 �
supX 0

�X .PX .X 0/�QX.X 0//.
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Lemma 2 Let PXYƒjAB be defined for any X 2 Œd �, Y 2 Œd �, A 2 An, and B 2 Bn.
If (4.20) holds then




PXƒja � NPX � Pƒja





1

	 d

2
In;d .PXYjAB/ ;

for any a 2 An, with NPX.x/ D 1=d for x 2 Œd �.
We saw that I2;2.P NL

XYjAB/ D 0 for the non-local box distribution P NL
XYjAB and the

lemma thus implies that X is uniform and independent of ƒ, in agreement with
our derivation above. More generally, for any n and d , there exist distributions
PXYjAB for which In;d .PXYjAB/ D 0. However, such distributions cannot be
realised by local measurements on two parts of a quantum system in the bipartite
measurement scenario described in Sect. 4.5. Nevertheless, for the particular state
and measurements defined in Sect. 4.7, for any d , In;d approaches 0 for large n.

Lemma 3 Let PXYjAB d � PXYjAB‰.�; �j�; �;  d/ be the probability distribution given
by the Born rule (4.9), for U ,  D  d , f…a

xgx2Œd �, and f…b
ygy2Œd � defined by (4.17)–

(4.19), a 2 An and b 2 Bn. Then

In;d .PXYjAB d / 	 �2

6n
:

The statement follows from a relatively straightforward calculation, whose
details are given in [11].

We are now ready to prove the claims formulated in Sect. 4.7.

Proof of Theorem 1 Note first that distinction between the random variablesƒ and
C is irrelevant for the statement of the theorem. We can therefore without loss
of generality think of C as being included in ƒ, which simplifies the notation.
Furthermore, since the claim only needs to hold conditioned on ‰ D  d , it
suffices to consider the conditional probability distribution PXYABƒj d . Because of
Property (FR), Lemma 1 implies that this distribution satisfies the non-signalling
conditions (4.20) (see also Footnote 12). Furthermore, because of Property (QM),
we have by Lemma 3 that for any " > 0

In;d .PXYjAB d / 	 2"

d

for sufficiently large n 2 N. Hence, by Lemma 2 we find that




PXƒja d � NPX � Pƒja d





1

	 "

for any a 2 An. Note that, for the particular choice a D 0, this upper bound holds
for any " > 0, as a D 0 is an element of An for any n. We thus have

PXƒja d D NPX � Pƒja d
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for a D 0. The only variable in the past of ‰ is ƒ (as well as C , which we assume
to be included inƒ). As we have shown thatƒ is independent ofX , conditioned on
A D a D 0, Property (‰-S) follows. ut
Proof of Corollary 1 If one of the events ‰ D  d and ‰ D  r has probability 0
then the statement is trivially true. We therefore assume in the following that both
events have strictly positive probability. In particular, the conditional distribution
PXƒj‰.�; �j d/ is well defined and hence, because of Assumption (FR), also
PXƒjA‰.�; �ja; d/ for a 2 Œ0; 1�Q.

Let L be the set of values � in the range of ƒ such that the conditional
probability PX jAƒ‰.d � 1j0; �;  d / is defined and equal to 1=d . By Theorem 1, if
we condition on ‰ D  d and A D 0, ‰ is sufficient for predictingX , which means
that

PX jAƒ‰.d � 1j0; �;  d/ D PX jA‰.d � 1j0;  d/

holds almost surely over the values � for ƒ. Furthermore, it follows from
Property (QM) that X is uniformly distributed over Œd �, so that

PX jAƒ‰.d � 1j0; �;  d/ D 1=d

holds almost surely. This implies that the set L must have weight 1, i.e.,
Pƒj‰.Lj d/ D PƒjA‰.Lj0;  d / D 1.

Likewise, Property (ƒ-S) implies the existence of a set QL such that
PƒjA‰. QLj0;  d / D 1, and, for � 2 QL,

PX jAƒ‰.d � 1j0; �;  d/ D PX jAƒ.d � 1j0; �/ : (4.21)

Defining NL D L \ QL, we have that for � 2 NL, PX jAƒ.d � 1j0; �/ D 1=d

with

PƒjA‰. NLj0;  d / D 1 : (4.22)

Using Property (QM), for ‰ D  r we have PX jA‰.d � 1j0;  r/ D 0 (since
r < d ). From (ƒ-S), it follows that

PX jA‰.d � 1j0;  r/ D
Z

dPƒjA‰.�j0;  r/PX jAƒ.d � 1j0; �/ ; (4.23)

and hence that there exists a set NL0 with

PƒjA‰. NL0j0;  r/ D 1 ; (4.24)
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such that for � 2 NL0, PX jAƒ.d � 1j0; �/ D 0. It follows that NL \ NL0 D ;, and hence
we can define the function f such that

f .�/ D
(
 d if � 2 NL
 r if � 2 NL0.

It follows from (4.22) and (4.24) that f .ƒ/ D ‰ holds with probability 1.
ut

4.9 Generalised Claims

Theorem 1, as stated in Sect. 4.7, holds for local measurements on a bipartite
maximally entangled state, but is silent about other measurements. In this section we
provide a more general formulation of the theorem, which applies to any projective
measurement, in the following denoted f N…xgx2 NX , on any pure state  in a finite
dimensional Hilbert space H.

To formulate the assumptions of the generalised theorem, it is no longer sufficient
to assume validity of the Born rule for the particular measurements considered in
Sect. 4.7. Instead we need to construct additional measurements, depending on
the measurement of interest, f N…xgx2 NX , and on  . The additional measurements
are defined on an extended Hilbert space, which contains H as a subsystem.
Property (QM) of the generalised theorem then demands that the Born rule is valid
for the additional measurements on the extended space.

To construct the additional measurements, we first note that, according to
quantum theory, a projective measurement f N…xgx2 NX corresponds to a physical
evolution specified by a trace-preserving completely positive mapping (TPCPM)
that takes any density operator � on H to a convex combination of the (mutually
orthogonal) post-measurement states. This may be seen as part of a reversible
evolution on a larger space, known as the Stinespring dilatation. Formally, the latter
is given by an isometry U from H to a product space H ˝ H0 such that20

trH0.U�U �/ D
X

x2 NX
N…x� N…x .8�/ ; (4.25)

20One may argue that any implementation of the measurement defined by f N…xgx2 NX admits such
a description, as the only condition on U is that it is a Stinespring dilation of the projection
operation, cf. (4.25). The physical reason for this is that the measurement process (at least for
a short time) corresponds to a unitary evolution of an extended system, which may include part of
the measurement apparatus. We also remark that this claim only refers to standard quantum theory
and is (at least in principle) experimentally testable.
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Fig. 4.6 Illustration of the general argument. (a) The measurement of interest, defined by
projectors N…x , entangles the system with another system such that a subsequent measurement on
that system, with projectors jyihyj, reveals the outcome of the original measurement. (b) After the
interaction between the two systems corresponding to the quantum description of the measurement,
one can consider sets of local measurements, one set that act on the first system and one half
of an embezzling state, and the other set that act on the second system and the other half of
the embezzling state. These measurements are chosen such that PXYjAB is the same as if the
measurements given in (4.18) and (4.19) are applied to a state of the form given in (4.17). In
addition, a measurement labelled B D 0 is included, which corresponds to measuring the second
system with projectors jyihyj (and ignoring the second half of the embezzling state), in other
words, when B D 0, the outcome of the original measurement is read out

and we can take U to be

U D
X

x2 NX
N…x ˝ jxi ; (4.26)

where fjxigx2 NX is a family of orthonormal vectors on H0. Thus the original
measurement can be thought of as the concatenation of this isometry with a
measurement defined by the projectors fjxihxjgx2 NX on H0 (see also Fig. 4.6a).21

For our construction, we will further expand this space by adding a bipartite
system QH ˝ QH0 initialised in a specific state j�i. We then consider measurements

21One may think of H0 as representing (part of) the measurement device used to measure w.r.t.
f N…xgx2 NX and the subsequent measurement on H0 as reading the value from the device.
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given by families of projectors f O…a
xgx2X and f O…b

ygy2Y on H ˝ QH and H0 ˝ QH0,
respectively. The Born rule, adapted to this situation, reads

PXYjAB‰.x; yja; b;  / D �h jU � ˝ h� j	� O…a
x ˝ O…b

y

	�
U j i ˝ j�i	 : (4.27)

With these preparatory remarks, we are ready to state the general version of
Claim 1. As before, the chronological structure ‡Ext is the one defined in Sect. 4.5.
The theorem applies to any random variables A, B , C , X , Y , ƒ, and ‰.

Theorem 1 (General Version) Let j i 2 H, f N…xgx2 NX be a projective mea-
surement on H and let U be an isometry such that (4.26) holds (i.e., U is a
Stinespring dilatation). Then there exists j�i and projective measurements f O…a

xgx2X
and f O…b

ygy2Y parameterised by a; b 2 Œ0; 1�Q such that

O…bD0
y D jyihyj ˝ id QH0 .8y 2 NX / (4.28)

and such that the following holds. If

• (QM) conditioned on ‰ D  , the Born rule (4.27) holds;
• (FR) A and B are free (w.r.t. ‡Ext) and their support contains Œ0; 1�Q;

then, conditioned on B D 0 and ‰ D  ,

• (‰-S) ‰ is sufficient for predicting Y (w.r.t. ‡Ext).

Note that, for the case B D b D 0, which is relevant for Property (‰-S), the
outcome Y is obtained by a measurement that corresponds to the measurement
of interest, i.e., the one defined by the projectors f N…xgx2 NX . Indeed, it follows
from (4.26) and (4.28) that, for any y 2 NX ,

X

x

.U � ˝ h� j/. O…a
x ˝ O…bD0

y /.U ˝ j�i/ D U �.idH ˝ jyihyjH0/U D N…y :

(4.29)

The theorem is proved in [19]. It is not our intention to repeat the argument here,
but rather to explain the ideas behind the result at a more informal level through two
examples.

The first simple example is the projective measurement f N…0; N…1g D
fj0ih0j ; j1ih1jg on the state j i D p

1=2.j0i C j1i/. For this measurement the
isometry U can be taken to be

U D �j0iH ˝ j0iH0

	h0jH0 C �j1iH ˝ j1iH0

	h1jH0 (4.30)

so that

U j i D p
1=2
�j0iH ˝ j0iH0 C j1iH ˝ j1iH0

	
: (4.31)

It is easy to see that this U satisfies (4.26).
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We now show that in this case the claim of the generalised version of Theorem 1
follows from its restricted version stated in Sect. 4.7 for d D 2. We do not need j�i,
i.e., we can set QH D QH0 D C. Furthermore, we take O…a

x D …a
x and O…b

y D …b
y to

be the projectors defined by (4.18) and (4.19), respectively. Note that this choice is
compatible with condition (4.28). Furthermore, (4.31) implies that (4.17) holds for
U as defined above and  d D  . With (4.17)–(4.19) satisfied, all requirements of
the restricted form of Theorem 1 are fulfilled and we can conclude that, provided A
andB can be chosen freely and that the Born rule holds,‰ is sufficient for predicting
the measurement outcome X in the case A D 0.

In order to extend this conclusion to the case B D 0, note that the Born rule
gives PXYjAB .x; yj0; 0;  / D 0 whenever x ¤ y, in other words, when A D 0 and
B D 0 the outcomes X and Y are always equal. It follows that ‰ is also sufficient
for predicting the outcome Y when B D 0.

For more general states and projective measurements, using an isometry U with
the same form as (4.30) won’t necessarily lead to a maximally entangled state of
the form (4.17), and hence won’t directly allow the restricted form of Theorem 1 to
be applied. Hence, to derive the claim we need a slightly stronger argument. This
involves some pre-shared entanglement, corresponding to the state j�i in (4.27). The
next example illustrates this idea (see also Fig. 4.6).

Suppose that the state j i D 1=2.j0i C p
3 j1i/ is measured with projectors

f N…0; N…1g D fj0ih0j ; j1ih1jg. In this case, the isometry U can be chosen as in the
previous example [see Eq. (4.30)] and gives rise to the state

U j i D 1=2
�j0iH ˝ j0iH0 C p

3 j1iH ˝ j1iH0

	
;

and, as before, a subsequent measurement of fj0ih0j ; j1ih1jg on H0 reads out the
outcome. Suppose now that an additional entangled state, j�i QH QH0 , is available. This
is taken to be in a special state, called an embezzling state [25]. The key feature
of this state is that for all m 2 N there exist isometries Vm W QH 7! OH ˝ QH and
Wm W QH0 7! OH0 ˝ QH0 such that

.Vm ˝Wm/ j�i QH QH0 D 1=
p

m

m�1X

iD0
jmi OH ˝ jmi OH0 ˝ j�i QH QH0 :

Using these, we can define V W H ˝ QH 7! H ˝ OH ˝ QH and W W H0 ˝ QH0 7!
H0˝ OH0˝ QH0 via V D j0ih0j˝V1Cj1ih1j˝V3 andW D j0ih0j˝W1Cj1ih1j˝W3,
so that the state .V ˝W /

�
U j i ˝ j�i	 has the form

1=2
� j00iH OH j00iH0 OH0 C j10iH OH j10iH0 OH0

C j11iH OH j11iH0 OH0 C j12iH OH j12iH0 OH0

	˝ j�i QH QH0 ;
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which is isomorphic to

1=2
�j0i NH j0i NH0 C j1i NH j1i NH0 C j2i NH j2i NH0 C j3i NH j3i NH0

	˝ j�i QH QH0

(i.e., NH Š H ˝ OH with the isometry j00iH OH 7! j0i NH, j10iH OH 7! j1i NH, j11iH OH 7!
j2i NH, j12iH OH 7! j3i NH and, similarly, NH0 Š H0 ˝ OH0).

Take O…bD0
y D jyihyj ˝ id QH0 , and use V and W to construct the measurements

O…a
x D V �…a

xV and O…b
y D W �…b

yW (b ¤ 0) in terms of the projectors …a
x and

…b
y defined as in (4.18) and (4.19) (except that they are now defined on NH and

NH0). Note that the isometries V andW are controlled on H and H0 respectively, and
hence the outcome of the measurement corresponding toA D 0 (which is equivalent
to a measurement with projectors fjxihxj NHg on .V ˝ W /

�
U j i ˝ j�i	) allows

direct determination of the outcome of a measurement on U j i with projectors
fjyihyjH0g. In other words, when both A D 0 and B D 0 the outcome Y is a
function of X (in our example, Y D 0 if X D 0 and Y D 1 if X 2 f1; 2; 3g).

The restricted form of Theorem 1 applies to j d i D j i ˝ j�i using the Born
rule (4.27), and hence in the case A D 0, ‰ is sufficient for predicting X . Since
for A D 0 and B D 0, Y is a function of X , it follows that ‰ is also sufficient
for predicting the outcome Y when B D 0. (Somewhat remarkably, using the same
embezzling state but varying the isometries V and W always allows us to generate
a state arbitrarily close to one for which the restricted form of Theorem 1 applies.)

Finally, we give a generalised version of Corollary 1, which in Sect. 4.7 is stated
for the case where ‰ is chosen from a set of only two wavefunctions.

Corollary 1 (General Version) Let S be a countable set of wavefunctions on H
such that jh j 0ij < 1 for any j i ; j 0i 2 S. Then there exist measurements
f…a

xgx2X and f…b
ygy2Y parameterised by a; b 2 Œ0; 1�Q such that the following

holds whenever ‰ takes values from the set S. If

• (QM) the Born rule (4.9) holds;
• (FR) A and B are free (w.r.t. ‡Ext) and their support contains Œ0; 1�Q;
• (ƒ-S) conditioned on A D 0, ƒ is sufficient for predicting X (w.r.t. ‡Ext)

then there exists a function f such that f .ƒ/ D ‰ holds almost surely.

For a proof of this extended version of the corollary we refer to [11].

4.10 Discussion

We begin this section by briefly discussing the relation between our work and others
in the literature.

One of the most prominent results of this type, Bell’s theorem [6], follows as a
corollary of Theorem 1 (the restricted version given in Sect. 4.7 is sufficient). To see
this, let us first consider the original version of Bell’s theorem [3]. The theorem
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refers to “hidden variables” ƒ that determine the measurement outcome X for any
fixed choice of measurement A. In our notation, this means that PX jAƒ 2 f0; 1g.
But since the outcomes of quantum measurements are generally not deterministic,
i.e., PX jA‰ … f0; 1g, this contradicts Property (‰-S). Theorem 1 thus implies that,
provided the Born rule holds and the measurement settings can be chosen freely,
there cannot exist any hidden variable ƒ that determines X . This is exactly the
statement of Bell’s theorem [3].

In later variants of Bell’s theorem, the requirement of determinism was weakened
to “local causality”, as defined in Sect. 4.6, cf. (4.14). In fact, in our framework
we can obtain this more general variant from Theorem 1 using only outcome
independence (4.16), which is a consequence of local causality. One way to do
this was sketched in [19]. However, a more direct way was recently given by
Forster [26], who proved the following lemma.

Lemma 4 Properties (QM), (‰-S) and outcome independence (4.16) are
incompatible.

Proof According to Property (QM), the outcomes of the measurements (4.18)
and (4.19) on entangled states are generally correlated, so that

PXYjAB ¤ PX jABPY jAB (4.32)

(we consider the state, ‰, to be fixed so suppress it in the distributions here).
If Property (‰-S) holds then PX jABƒ D PX jAB, and similarly for Y . Using
outcome independence (4.16) followed by this relation, and writing PXYjAB� for
PXYjABƒ.�; �j�; ��/, we have

PXYjAB D
Z

dPƒjAB.�/PXYjAB�

D
Z

dPƒjAB.�/PX jAB�PY jAB�

D
Z

dPƒjAB.�/PX jABPY jAB D PX jABPY jAB ;

which is in contradiction with (4.32). ut
Since Theorem 1 asserts that Properties (QM) and (FR) imply (‰-S), it follows

that (QM), (FR) and outcome independence are incompatible, which is another way
to state Bell’s theorem.

Our second claim, Corollary 1, has also been established by Pusey et al. [13]
using a different argument. Instead of being based on free choice, i.e., Property (FR),
they assume “preparation independence”. The latter means that in situations where
quantum theory assigns a product state, so does the alternative theory. More
precisely, if independent preparations of N quantum systems are made, so that
the joint quantum state is �1 ˝ �2 ˝ � � � ˝ �N , then the “real physical state” ƒ
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[in our language, the state of an alternative theory that satisfies Property (ƒ-S)]
takes a similar product form, i.e., ƒ can be divided into ƒ1, ƒ2, etc., where ƒi

represents the physical state of the i th system. As discussed in [11, 19], preparation
independence and free choice are related. Furthermore, it has been shown that a
setup consisting of at least two systems (as in Sect. 4.5) is necessary to arrive at the
claim [27].

One may also ask whether it is possible to further strengthen the claims of
Theorem 1 and Corollary 1 by relaxing the assumptions. In particular, it would be
interesting to weaken assumption (FR), as this assumption cannot be experimentally
verified (without access to ƒ). This has led to the question of “randomness
amplification”: given a random value that satisfies (FR) only approximately, is
it possible to generate a random value that satisfies (FR) to arbitrarily good
accuracy [28]? This question has been studied recently in a series of work. The
conclusion is that randomness amplification is indeed possible, even if the initial
randomness satisfies (FR) only with arbitrarily small probability [29–31].

Although this chapter is about quantum theory, we have talked about the
predictions it makes from the point of view of a classical observer. For example,
we considered the maximum knowledge we can have about the state of a system
within quantum theory to be a (classical) description of a pure state. Likewise,
in a higher theory we have also considered the predictions based on an additional
classical parameter (or set of parameters), ƒ.22 In fact, we can make an analogous
argument in the case that the predictions of the higher theory are made based on
a hypothetical additional system that has both an input and an output [9]. Such a
system can be modelled in terms of its (classical) input-output behaviour (this is
the higher theory analogue of modelling a quantum system by its behaviour under
measurement).

The use of classical random variables also appears to be in tension with our
modelling of a quantum measurement as a unitary interaction. If all quantum
processes are unitary, what is the meaning of a random variable? This is not an easy
question, and is related to the question of why we don’t experience superpositions. If
all processes are quantum, then when we read out a measurement outcome, our brain
will become entangled with the measured particle and the measurement device.
However, we experience a single outcome occurring.

Thus, any random variables are defined from an observer’s perspective. Being
observer-centred is the way most theories evolved, their main purpose being to
enable observers to make predictions. In quantum theory, the random variables do
not have universal meaning: in principle, the process of making an observation could
be undone if the unitary enacting that observation is reversed. After the reversal, the
“outcome” would no longer have any meaning, and the observer would have no

22The parameters are classical in the sense of being modelled as random variables. However, they
may be derived from measurements on a quantum (or more general) system, so the correlations
between them need not have a locally causal explanation (which is often taken to be a property of
classicality).
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memory of it. Thus, the notion of a measurement having taken place only makes
sense from the point of view of an observer. In addition, the question of when an
outcome occurred is observer-dependent. (An observer may not be able to give a
precise moment, but can at least give a time after which it makes sense (from their
perspective) to say that the measurement has taken place.)

A more general theory may dispense with such classical notions and consider
the predictions of a quantum observer (one could think of this as a machine that
processes information in a quantum way). This goes beyond the scope of this
chapter.
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Chapter 5
The Role of the Probability Current
for Time Measurements

Nicola Vona and Detlef Dürr

5.1 Introduction

Think of a very simple experiment, in which a particle is sent towards a detector.

When will the detector click?

Imagine to repeat the experiment many times, starting a stopwatch at every run. The
instant at which the particle hits the detector will be different each time, forming a
statistics of arrival times. Experiments of this kind are routinely performed in almost
any laboratory, and are the basis of many common techniques, collectively known
as time-of-flight methods (TOF). In spite of that, how to theoretically describe an
arrival time measurement is a very debated topic since the early days of quantum
mechanics [22]. It is legitimate to wonder why it is so easy to speak about a position
measurement at a fixed time, and so hard to speak about a time measurement at a
fixed position. An overview of the main attempts and a discussion of the several
difficulties they involve can be found in [18–20].

In the following, we will discuss the theoretical description of time measurements
with particular emphasis on the role of the probability current.
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5.2 What is a Measurement?

We will start recalling the general description of a measurement in quantum
mechanics in terms of positive operator valued measures (POVMs). This framework
is less common than the one based on self-adjoint operators, but is more general and
more explicit than the latter.

5.2.1 Linear Measurements: POVMs

When we speak about a measurement, what are we speaking about?
A measurement is a situation in which a physical system of interest interacts

with a second physical system, the apparatus, that is used to inquire into the former.
In general, we are interested in those cases in which the experimental procedure is
fixed and independent of the state of the system to be measured given as input; these
cases are called linear measurements. The meaning of this name will be clarified in
the following. The analysis of the general properties of a linear measurement, and of
the general mathematical description of such a process, has been carried out mostly
by Ludwig [16], and finds a natural completion within Bohmian mechanics [8]. In
the following, we will present a simplified form of this analysis [6, 21].

We will denote by x the configuration of the system and by  0 its initial state,
element of the Hilbert space L2.R3n/, while we will use y for the configuration of
the apparatus and ˆ0 2 L2.R3N / for its ready state; moreover, we will denote by
.0; T / the interval during which the interaction constituting the measurement takes
place. The evolution of the composite system is a usual quantum process, so the
state at time T is

‰T .x;y/ D .UT ‰0/.x;y/ D UT . 0 ˆ0/.x;y/; (5.1)

where UT is a unitary operator on L2.R3.NCn//. We call such an interaction a
measurement if for every initial state  0 it is possible to write the final state ‰T as

‰T .x;y/ D
X

˛

 ˛.x/ˆ˛.y/; (5.2)

with the states ˆ˛ normalized and clearly distinguishable, i.e. with supports G˛ D
fy jˆ˛.y/ ¤ 0g macroscopically separated. This means that after the interaction it
is enough to “look” at the position of the apparatus pointer to know the state of the
apparatus. Each support G˛ corresponds to a different result of the experiment, that
we will denote by �˛. One can imagine each support to have a label with the value
�˛ written on it: if the position of the pointer at the end of the measurement is inside
the regionG˛ , then the result of the experiment is �˛. The probability of getting the
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outcome �˛ is

P˛ D
Z

dx
Z

G˛

dy j‰T .x;y/j2 D
Z

dx
Z

G˛

dy j ˛.x/ˆ˛.y/j2 D
Z

j ˛.x/j2 dx;

(5.3)

indeed ˆ˛0 .y/ D 0 8y 2 G˛ , ˛0 ¤ ˛, and the ˆ˛ are normalized. Consider now the
projectorsP˛ that act on the Hilbert spaceL2.R3.NCn// of the composite system and
project to the subspace L2.R3n � G˛/ corresponding to the pointer in the position
˛, i.e. in particular

P˛‰T D  ˛ ˆ˛: (5.4)

Through the projectors P˛ we can define the operatorsR˛ such that

P˛‰T D  ˛ ˆ˛ D .R˛ 0/ ˆ˛; (5.5)

that means R˛ 0 D  ˛ . Finally, we can also define the operators O˛ D R
�
˛R˛ .

These operators are directly connected to the probability (5.3) of getting the
outcome ˛

P˛ D k ˛k2 D h 0jO˛ 0i : (5.6)

Therefore, the operators O˛ together with the set of values �˛ are sufficient to
determine any statistical quantity related to the experiment. The fact that any
experiment of the kind we have considered can be completely described by a set of
linear operators, explains the origin of the name linear measurement. Equation (5.6)
implies also that the operatorsO˛ are positive, i.e.

h 0jO˛ 0i � 0 8 0 2 L2.R3n/: (5.7)

In addition, they constitute a decomposition of the unity, i.e.

X

˛

O˛ D 1; (5.8)

as a consequence of the unitarity of UT and of the orthonormality of the states ˆ˛ ,
that imply

1 D k 0ˆ0k2 D k‰T k2 D
X

˛

k ˛k2 D
X

˛

h 0jO˛ 0i 8 0 2 L2.R3n/:
(5.9)

A set of operators with these features is called discrete positive operator valued
measure, or simply POVM. It is a measure on the discrete set of values �˛ . In case
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the value set is a continuum, the POVM is a Borel-measure on that continuum,
taking values in the set of positive linear operators.

It is important to note that in the derivation of the POVM structure the
orthonormality of the states ˆ˛ and the unitarity of the overall evolution play a
crucial role, while in general, the states  ˛ do not need to be neither orthogonal nor
distinct.

In case the operators O˛ happen to be orthogonal projectors, then the usual
measurement formalism of standard quantum mechanics is recovered by defining
the selfadjoint operator OA D P

˛ �˛ O˛ . Physically, this condition is achieved for
example in a reproducible measurement, i.e. one in which the repetition of the
measurement using the final state  ˛ as input, gives the result ˛ with certainty.

We remark that calculating the action of a POVM on a given initial state requires
that the initial state is evolved for the duration of the measurement together with
an apparatus, and therefore its evolution in general differs from the evolution of
the system alone. This circumstance is evident if one thinks that the state of the
system after the measurement will depend on the measurement outcome.1 Usually,
if the measurement is not explicitly modeled, this evolution is considered as a black
box that takes a state as input and gives an outcome and another state as output. It
is important to keep in mind that the measurement formalism always entails such
a departure from the autonomous evolution of the system, even if not explicitly
described.

5.2.2 Not Only POVMs

Although a linear measurement is a very general process, there are many quantities
that are not measurable in this sense. An easy example is the probability distribution
of the position j j2. Indeed, suppose to have a device that shows the result �1 if the
input is a particle in a state for which the position is distributed according to j 1j2,
and �2 if it is in a state with distribution j 2j2. If the process is described by a
POVM, the linearity of the latter requires that when the state  1 C  2 is given as
input, the result is either �1 or �2, as for example the result of a measurement of spin
on the state jupi C jdowni is either “up” or “down”. On the contrary, if the device
was supposed to measure the probability distribution of the position, the result had
to be �C, corresponding to j 1 C  2j2, possibly distinct both from �1 and from �2.

To overcome a limitation of this kind, the only possibility is to give up on
linearity, accepting as measurement also processes different than the one devised
in the previous section. These processes use additional information about the
x-system, for example giving a result dependent on previous runs, or adjusting
the interaction according to the state of the x-system. In particular, to measure

1It will be an eigenstate of the selfadjoint operator corresponding to the measurement, in case it
exists.
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the probability distribution of the position one exploits the fact that j .x/j2 D
h jOx j i, where Ox D jxi hxj is the density of the POVM corresponding to
a position measurement. Instead of measuring directly j j2, one measures x,
and repeats the measurement on many systems prepared in the same state  .
The distribution j j2 is then recovered from the statistics of the results of the
position measurements. The additional information needed in this case is that all
the x-systems used as input were prepared in the same state. The outcome shown
by the apparatus depends then on the preparation procedure of the input state: if we
change it, we have to notify the change to the apparatus, that needs to know how to
collect together the single results to build the right statistics.

For other physical quantities not linearly measurable, like for example the
wave function, a similar, but more refined strategy is required. This strategy is
known as weak measurement [1]. An apparatus to perform a weak measurement
is characterized first of all by having a very weak interaction with the x-system;
loosely speaking, we can say that the states  ˛ are very close to the initial state
 0. As a consequence of such a small disturbance, the information conveyed to the
y-system by the interaction is very little. The departure from linearity is realized in
a way similar to that of the measurement of j j2: the single run does not produce
any useful information because of the weak coupling, therefore the experiment is
repeated many times on many x-systems prepared in the same initial state  0; the
result of the experiment is recovered from a statistical analysis of the collected data.

The advantage of this arrangement is that the output state  ˛ can be used as
input for a following linear measurement of usual kind (strong), whose reaction is
almost as if its input state was directly  0. In this case the experiment yields a joint
statistics for the two measurements, and it is especially interesting to postselect on
the value of the strong measurement, i.e. to arrange the data in sets depending on the
result of the strong measurement and to look at the statistics of the outcomes of the
weak measurement inside each class. For example, a weak measurement of position
followed by a strong measurement of momentum, postselected on the value zero for
the momentum, allows to measure the wave function [17].

The nonlinear character of weak measurements becomes apparent if one under-
stands the many repetitions they involve in terms of a calibration. Indeed, one can
think of the last run as the actual measurement, and of all the previous runs as a
way for the apparatus to collect information about the x-system used in the last run,
profiting from the knowledge that it was prepared exactly as the x-systems of the
previous runs. The x-systems used in the preliminary phase can be then considered
part of the apparatus, used to build the joint statistics needed to decide which
outcome to attribute to the last strong measurement. For example, the result of the
experiment could be the average of the previous weak measurements postselected
on the strong value obtained in the last run. If we then change the initial wave
function  0 to some  00, the calibration procedure has to be repeated. In this case,
the apparatus itself depends on the state of the x-system to be measured, breaking
linearity.
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5.3 Time Statistics

Now we finally come to our topic: time measurements. At first, we have to note
that there are several different experiments that can be called time measurements:
measurements of dwell times, sojourn times, and so on. We will refer in the present
discussion exclusively to arrival times, although it is possible to recast everything
to fit any other kind of time measurement. More precisely, we will consider the
situation described at the beginning: a particle is prepared in a certain initial state
and a stopwatch is set to zero; the particle is left evolving in presence of a detector
at a fixed position; the stopwatch is read when the detector clicks. The time read on
the stopwatch is what we call arrival time.

A measurement of this kind is necessarily linear, and we can ask for the statistics
of its outcomes given the initial state of the particle. If, for example, we measure
the position at the fixed time t , then we can predict the statistics of the results by
calculating the quantity

h t jxi hxj t i : (5.10)

Which calculation do we have to perform to predict the statistics of the stopwatch
readings with the detector at a fixed position?

5.3.1 The Semiclassical Approach

Arrival time measurements are routinely performed in actual experiments, and they
are normally treated semiclassically: essentially, they are interpreted as momentum
measurements. The identification with momentum measurements is motivated by
the fact that the detector is at a distance L from the source usually much bigger
than the uncertainty on the initial position of the particles, so one can assume that
each particle covers the same length L. Hence, the randomness of the arrival time
must be a consequence of the uncertainty on the momentum, and the time statistics
must be given by the momentum statistics. For a free particle in one dimension,
the connection between time and momentum is provided by the classical relation
p.t/ D mL=t . By a change of variable, this relation implies that the probability
density of an arrival at time t is

j Q .p.t//j2
ˇ
ˇ
ˇ
ˇ
dp.t/

dt

ˇ
ˇ
ˇ
ˇ D j Q .p.t//j2 mL

t2
; (5.11)

where Q is the Fourier transform of the wave function  .
This semiclassical approach is justified by the distance L being very big, that is

true for most experiments so far performed. On the other hand, we tacitly assumed
that the particle moves on a straight line with constant velocity v, whose ignorance
is the source of the arrival time randomness: such a classical picture is inadequate
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to describe the behavior of a quantum particle in general conditions, and is expected
to fail in future, near-field experiments. A deeper analysis is needed.

5.3.2 An Easy but False Derivation

Consider that the particle crosses the detector at time t with certainty. This implies
that the particle is on one side of the detector before t , and on the other side after t .
One can therefore think that it is possible to connect the statistics of arrival time
to the probability that the particle is on one side of the detector at different times.
Because the latter is known, this seems like a good strategy.

For simplicity we will consider only the one dimensional case, that already
entails all the relevant features that we want to discuss.2 The detector is located
at the origin; we will assume the evolution of the particle in presence of the detector
to be very close to that of the particle alone. We consider the easiest possible case:
a free particle, initially placed on the negative half-line and moving towards the
origin, i.e. prepared in a state  0 such that

 0.x/  0 8x � 0I (5.12)

Q .p/ D 0 8p 	 0; (5.13)

where Q denotes the Fourier transform of  0, and Eq. (5.12) is a shorthand forR
1

0
 0.x/dx � 1. The particle can only have positive momentum, therefore it will

get at some time to the right of the origin and thus it has to cross the detector from
the left to the right.

One might think that the probability to have a crossing at a time 
 later than t is
equal to the probability that the particle at t is still in the left region,

P.
 � t/ D P.x 	 0I t/ D
Z

0

�1

dx j t .x/j2: (5.14)

Conversely, the probability that the particle arrived at the detector position before t is

P.
 < t/ D 1 � P.
 � t/ D
Z

1

0

dx j t .x/j2: (5.15)

Therefore, the probability density ….t/ of a crossing at t is

….t/ D d

dt
P.
 < t/ D

Z
1

0

dx @t j t .x/j2: (5.16)

2The same treatment is possible in three dimensions, provided that the detector is sensitive only
to the arrival time and not to the arrival position, and that the detecting surface divides the whole
space in two separate regions (i.e. it is a closed surface or it is unbounded).
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We can now make use of the continuity equation for the probability

@t
�j t .x/j2

	C @xj .x;t/ D 0; (5.17)

that is a consequence of the Schrödinger equation, with the probability current

j .x;t/ WD „
m

= �t .x/ @x t .x/: (5.18)

Substituting,

….t/ D �
Z

1

0

dx @xj .x;t/ D j .xD0;t/: (5.19)

Thus, the probability density ….t/ of an arrival at the detector at time t is equal to
the probability current j .xD0;t/, provided everything so far has been correct. Well, it
hasn’t. Equation (5.14) is problematical. It is only correct if the right hand side is a
monotonously decreasing function of time, or, equivalently, if the current in (5.19)
is always positive. But that is in general not the case and it is most certainly not
guaranteed by asking that the momentum be positive. Indeed, even considering
only free motion and positive momentum, there are states for which the current
is not always positive, a circumstance known as backflow (for an example, see the
Appendix). But a probability distribution must necessarily be positive, hence, the
current can not be equal to the statistics of the results of any linear measurement,
i.e. there is no POVM with density Ot such that

h 0jOt j 0i D j .xD0;t/: (5.20)

This problem is well known [2] and has given rise to a long debate, aiming at
finding a quantum prediction for the arrival time distribution with the needed POVM
structure [18].

One might wonder: How can it be that the momentum is only positive, and yet
the probability that the particle is in the left region is not necessarily decreasing?
A state with only positive momentum is such that, if we measure the momentum,
then we find a positive value with certainty. This is not the same as saying that the
particle moves only from the left to the right when we do not measure it. Actually,
in strict quantum-mechanical terms, it does not even make sense to speak about
the momentum of the particle when it is not measured, as it does not make sense
to speak about its position if we do not measure it, and therefore there is no way
of conceiving how the particle moves in this framework. Think for example of a
double slit setting: we can speak about the position of the particle at the screen, but
we can not say through which slit the particle went.

Although the quantum-mechanical momentum is only positive, the conclusion
that the particle moves only once from the left to the right is unwarranted. Even
more: it simply does not mean anything.
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5.3.3 The Moral

The problem with the simple derivation of the arrival time statistics is quite
instructive, indeed it forces us to face the fact that quantum mechanics is really
about measurement outcomes, and therefore it is a mistake to think of quantum-
mechanical quantities as of quantities intrinsic to the system under study and
independent of the measurement apparatus.

5.4 The Bohmian View

Bohmian mechanics is a theory of the quantum phenomena alternative to quantum
mechanics, but giving the same empirical predictions (see [6, 10]). The two
theories share at their foundation the Schrödinger equation. Quantum mechanics
complements it by some further axioms like the collapse postulate, and describes
all the objects around us only in terms of wave functions. On the contrary,
according to Bohmian mechanics the world around us is composed by actual point
particles moving on continuous paths, that are determined by the wave function.
The Schrödinger equation is in this case supplemented by a guiding equation that
specifies the relation between the wave function and the motion of the particles.
The usual quantum mechanical formalism is recovered in Bohmian mechanics as an
effective description of measurement situations (see [6]).

The main difference between quantum and Bohmian mechanics is that the first
one is concerned only with measurement outcomes, while the second one gives
account of the physical reality in any situation. Although every linear experiment
corresponds to a POVM according to quantum mechanics as well as to Bohmian
mechanics [8], for the former POVMs are the fundamental objects the theory is all
about, while for the latter they are only very convenient tools that occur when the
theory is used to make predictions.

We saw already how interpreting quantum-mechanical quantities as intrinsic
properties of a system is mistaken, and how the framework of quantum mechanics is
limited to measurement outcomes. In Bohmian mechanics the particle has a definite
trajectory, so it makes perfectly sense to speak about its position or velocity also
when they are not measured, and it is perfectly meaningful to argue about the
way the particle moves. In doing so, one has just to mind the difference between
the outcomes of hypothetical (quantum) measurements, and actual (Bohmian)
quantities.
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Fig. 5.1 Bohmian
trajectories in the vicinity of
the detector, placed at x D 0.
The trajectories, that cross the
detector between the times t
and t C dt , are those that at
time t have a distance from
the detector smaller than the
distance they cover during the
interval dt , that is v.t/ dt

5.4.1 The Easy Derivation Again. . .

Let’s review the derivation of Sect. 5.3.2 from the point of view of Bohmian
mechanics.

To find out the arrival time of a Bohmian particle it is sufficient to literally follow
its motion and to register the instant when it actually arrives at the detector position.
A Bohmian trajectoryQ.t/ is determined by the wave function through the equation

PQ.t/ D j .Q.t/;t /

j .Q.t/;t /j2 ; (5.21)

with j defined in Eq. (5.18). Hence, the Bohmian velocity, that is the actual
velocity with which the Bohmian particle moves, is not directly related to the
quantum-mechanical momentum, that rather encodes only information about the
possible results of a hypothetical momentum measurement. Even if the probability
of finding a negative momentum in a measurement is zero, the Bohmian particle can
still have negative velocity and arrive at the detector from behind, or even cross it
more than once.3 It is in these cases that the current becomes negative.

We can now repeat the derivation of Sect. 5.3.2 using the Bohmian velocity
instead of the quantum-mechanical momentum. We consider again an initial state
 0 such that  0.x/  0 if x � 0, but we do not ask anymore the momentum to be
positive: we rather ask the Bohmian velocity to stay positive for every time after the
initial state is prepared. The particle crosses the detector between the times t and
t C dt if at time t they are separated by a distance less than v.xD0;t/ dt (cf. Fig. 5.1).
The probability that at time t the particle is in this region is v.0;t/ j .0;t/j2 dt , thus
the probability density of arrival times is simply

….t/ D v.0;t/ j .0;t/j2 D j .0;t/: (5.22)

3Note that the notion of multiple crossings of the same trajectory is genuinely Bohmian, with no
analog in quantum mechanics.
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If the velocity does not stay positive, it is still true that the particle crosses the
detector during .t; tCdt/ if at t they are closer than v.xD0;t/ dt , but now this distance
can also be negative. In this case the current j .0;t/ still entails information about
the crossing probability, but it also contains information about the direction of the
crossing. To get a probability distribution from the current we have to clearly specify
how to handle the crossings from behind the detector and the multiple crossings
of the same trajectory. For example, one can count only the first time that every
trajectory reaches the detector position, disregarding any further crossing, getting
the so-called truncated current [4, 13].

The Bohmian analysis is readily generalized to three dimensions with an
arbitrarily shaped detector, in which case also the arrival position is found. More
complicated situations, like the presence of a potential, or an explicit model for the
detector, can be easily handled too. Note that the presence of the detector can in
principle be taken into account by use of the so-called conditional wave function
[7, 23], that allows to calculate the actual Bohmian arrival time in exactly the
same way as described in this section, although the apparatus needs to be explicitly
considered.

5.4.2 Is the Bohmian Arrival Time Measurable
in an Actual Experiment?

Any distribution calculated from the trajectories conveys some aspects of the actual
motion of the Bohmian particle. Such a distribution does not need in principle to
have any connection with the results of a measurement, similarly to the Bohmian
velocity that is not directly connected to the results of a momentum measurement.
The Bohmian level of the description is the one we should refer to when arguing
about intrinsic properties of the system rather than measurement outcomes. Since,
in the framework of Bohmian mechanics, an intrinsic arrival time exists, namely
that of the Bohmian particle, one should ask the intrinsic question that constitutes
the title of this section rather than asking the apparatus dependent question

When will the detector click?

We do not mean that the latter question is irrelevant, to the contrary, it points towards
the prediction of experimental results, that is of course of high value. We shall
continue the discussion of the latter topic in Sect. 5.5.

5.4.2.1 Linear Measurement of the Bohmian Arrival Time

We now ask if a linear measurement exists, such that its outcomes are the first
arrival times of a Bohmian particle. For sure, this can not be exactly true, indeed,
if this was the case, then the outcomes of such an experiment would be distributed
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according to the truncated current, that depends explicitly on the trajectories and is
not sesquilinear with respect to the initial wave function as needed for a POVM.

However, it is reasonable to expect it to be approximately correct for some set of
“good” wave functions. That is motivated by the following considerations. A typical
position detector is characterized by a set of sensitive regions fAi � RgiD0;:::;N , each
triggering a different result. If the measurement is performed at a fixed time t , and if
we get the answer i , then the Bohmian particle is at that time somewhere inside the
regionAi . A time measurement is usually performed with a very similar set up: one
uses a position detector with just one sensitive regionA0 (in our case located around
the origin) and waits until it fires. In the ideal case, the reaction time of the detector
is very small, and we can consider that the click occurs right after the Bohmian
particle entered the sensitive region. As a consequence, if the Bohmian trajectories
cross the detector region only once and do not turn back in its vicinity, then we can
expect the response of the actual detector to be very close to the quantum current.
This puts forward the set of wave functions such that the Bohmian velocity stays
positive as a natural candidate for the set of good wave functions. Surprisingly, it
can be shown that there exists no POVM which approximates the Bohmian arrival
time statistics on all functions in this set [25].

On the other hand, it is easy to see that the Bohmian arrival time is approximately
given by a measurement of the momentum for all scattering states, i.e. those states
that reach the detector only after a very long time, so that they are well approximated
by local plane waves. Numerical evidence for a similar statement for the states with
positive Bohmian velocity and high energy was also produced [25], but a precise
determination of the set of good wave functions on which the Bohmian arrival time
can be measured is still missing.

An explicit example of a model detector whose outcomes in appropriate condi-
tions approximate the Bohmian arrival time can be found in [3].

5.4.2.2 Nonlinear Measurement

An alternative to a linear measurement that directly detects the arrival time of a
Bohmian particle is the reconstruction of its statistics from a set of measurements
by a nonlinear procedure.

A first possibility in this direction starts by rewriting the probability cur-
rent (5.18) as

j .x;t/ D h t j 1
2m

�jxi hxj Op C Op jxi hxj	 j t i ; (5.23)

where Op D �i„ @x is the momentum operator. The operator Oj WD 1
2m

�jxi hxj Op C
Op jxi hxj	 is selfadjoint, therefore it could be possible to measure the current at the

position x and at time t by measuring the average value at time t of the operator Oj .
Unfortunately, the operational meaning of this operator is unclear.
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A viable solution is offered by weak measurements. As showed by Wiseman
[27], it is possible to measure the Bohmian velocity, and therefore the current, by
a sequence of two position measurements, the first weak and the second strong,
used for postselection. Wiseman’s proposal has been implemented with small
modifications in an experiment with photons4 [15]. A detailed analysis of the weak
measurement of the Bohmian velocity and of the quantum current has been carried
out by Traversa et al. [24].

It is worth noting that the weak measurement of the Bohmian velocity, if intended
as a calibration of a non-linear measurement as explained in Sect. 5.2.2, gives rise
to a genuine measurement, i.e. one whose outcome reveals the actual velocity
possessed by the particle in that run [9].

5.5 When Will the Detector Click?

We still have to answer the question we posed at the beginning:

When will the detector click?

Surely, for any given experiment there is a POVM that describes the statistics of
its outcomes. Such an object will depend on the details of the specific physical
system and of the measurement apparatus used for the experiment. That is true
not only for time measurements, but for any measurement, and for quantum
mechanics as for Bohmian mechanics. Yet, we can speak for example of the position
measurement in general terms, with no reference to any specific setting, as it was
disclosing an intrinsic property of the system. How can that be?

One can speak of the position measurement and of its POVM in general terms
because a POVM happens to exist, that has all the symmetry properties expected
for a position measurement and that does not depend on any external parameter.
That suggests that some kind of intrinsic position exists independently of the
measurement details. Recalling how the POVMs have been introduced in Sect. 5.2.1,
it is readily clear that they inherently involve an external system (the apparatus) in
addition to the system under consideration, and therefore they encode the results
of an interaction rather than the values of an intrinsic property. We also saw in
Sect. 5.3.2 how interpreting quantum-mechanical statistics as intrinsic objects leads
to a mistake. It is therefore very important to keep in mind that all POVMs describe
the interaction with an apparatus. Having this clear, it still makes sense to look for
a POVM that does not explicitly depend on any external parameter, meaning with
this simply that one does not want to give too much importance to the details of
the apparatus. Such a POVM may be regarded for example as the limiting element
of a sequence of finer and finer devices, and it does not necessarily correspond to

4This experiment did not, of course, show the existence of a pointlike particle actually moving on
the detected paths, but only the measurability of the Bohmian trajectories for a quantum system.
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any realizable experiment. Nevertheless, the fortunate circumstance that occurs for
position measurements, for which such an idealized POVM exists, does not need to
come about for all physical quantities one can think of.

For the arrival time it is possible to show that some POVMs exist that have
the transformation properties expected for a time measurement [16], but in three
dimensions it is not possible to arrive at a unique expression in the general case,
i.e. to something independent of any external parameter. To do so, one needs to
restrict the analysis to detectors shaped as infinite planes, or similarly to restrict the
problem to one dimension ([14, 26]; see also [11, 12, 18]). In this case, for arrivals
at the origin, one finds the POVM

K.t1;t2/ D
X

˛D˙1

Z
t2

t1

dT jT; ˛i hT; ˛j ; (5.24)

with hpjT; ˛i D
r jpj

mh
�.˛p/ e

ip2T
2m„ ; (5.25)

that corresponds to the probability density of an arrival at time t

X

˛D˙1
j ht; ˛j 0i j2 D

X

˛D˙1

1

mh

ˇ
ˇ
ˇ
ˇ

Z
˛1

0

dp
p

jpj hpj t i
ˇ
ˇ
ˇ
ˇ

2

: (5.26)

Note that K is not a projector valued measure because hT;CjT;�i ¤ 0. For
scattering states K becomes proportional to the momentum operator, and the
density (5.26) gets well approximated by the probability current [5]. The general
conditions under which this approximation holds are still not clear.

5.5.1 The Easy Derivation, Once Again

The analysis of Sect. 5.4.2.1 of the measurability of the Bohmian arrival time
translates quite easily in an approximate derivation of the response of a detector:
essentially what we tried to do in Sect. 5.3.2, just right.

Consider again the setting described in Sect. 5.3.2, but with an initial state such
that the Bohmian velocity stays positive. That is equivalent to ask that the probability
current stays positive, and therefore that the probability that the particle is on the
left of the detector decreases monotonically in time. As described in Sect. 5.4.2.1,
thinking of the arrival time detector as of a position detector with only one sensitive
region A0 around the origin, it is reasonable to expect that for some set of good
wave functions the detector will click right when the particle enters A0. Hence,
the probability of a click at time t is approximately equal to the increase of the
probability that the particle is inside A0 at that time, i.e. to the probability current
through the detector. Therefore, for the good wave functions, the probability current
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is expected to be a good approximation of the statistics of the clicks of an arrival
time detector. As remarked in Sect. 5.4.2.1 the set of the good wave functions is not
exactly known, although it is clear that the scattering states are among its elements,
and possibly also the states with positive probability current and high energy.

Appendix: Example of Backflow

We mentioned that, even for states freely evolving and with support only on positive
momenta, the quantum current can become negative. We provide now a simple
example of this circumstance, depicted in Fig. 5.2. We use units such that „ D 1,
and choose the mass to be one.

We consider the superposition of two gaussian packets, both with initial variance
of position equal to 3, corresponding to a variance of momentum of 1=6. The first
packet is initially centered in x D �10 and moves with average momentum p D
2, while the second packet is centered in x D �34 and has momentum p D 6.
The probability of negative momentum is in this case negligible. The second packet
overcomes the first when they are both in the region around the origin, where the
detector is placed. In this area the two packets interfere, but then they separate again
(cf. Fig. 5.2a).

In Fig. 5.2d the Bohmian trajectories are shown on a big scale. One can see
that they never cross, but rather switch from one packet to the other. Moreover,
they are almost straight lines, except for the interference region. In that region, it
is interesting to look at a higher number of trajectories, making apparent that the
trajectories bunch together, resembling the interference fringes (cf. Fig. 5.2b, e).

Looking at the trajectories more in detail (Fig. 5.2f), one can see that they
suddenly jump from one fringe to the next, somewhen even inverting the direction
of their motion. In this case, it can happen that the particle crosses the detector
backwards, leading to a negative current, as shown in Fig. 5.2c.

One could argue that gaussian packets always entail negative momenta, and that
this could be the cause of the negative current. To show that this is not the case, we
can compare the probability to have negative momentum

P.p < 0/ D
Z

0

�1

j Q .p/j2 dp  10�33 (5.27)

with the probability to have a negative Bohmian velocity

P.v.t/ < 0/ D
Z

Kt

�.x;t/ dx; (5.28)

where Kt WD fx 2 Rjj .x;t/ < 0g. For instance, at time t D 5:2 this probability is
0:008 (numerically calculated), therefore the negative current can not be caused by
the negative momenta.
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a

b

c

d

e

f

Fig. 5.2 Example of backflow: superposition of two gaussian packets (for the parameters see text).
The dashed line always represents the detector. (a) Probability density of the position at time t D 0

(gray), t D 5:2 (blue), and t D 12 (red). (b) Probability density of the position as a function of
position and time. (c) Probability current at the screen as a function of time. (d) Overall structure
of the Bohmian trajectories. The blue and the red rectangles are magnified in (e, f) (Color figure
online)
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Chapter 6
Quantum Field Theory on Curved Spacetime
and the Standard Cosmological Model

Klaus Fredenhagen and Thomas-Paul Hack

6.1 Introduction

The attempt to incorporate gravity into quantum theory meets great conceptual
difficulties. The main reason for these problems seems to be the rather different roles
played by space and time in quantum theory and in Einstein’s theory of gravity. In
quantum theory, an a priori notion of space and time enters the formulation and the
interpretation of the theory in a crucial way. In Einstein’s theory of gravity, on the
other side, the structure of space and time is dynamical and strongly influenced by
the distribution of matter which is treated classically.

These severe conceptual problems are accompanied by hard technical problems,
hence testing ideas for solving the problem turns out to be extremely time
consuming, and it is difficult to obtain reliable conclusions. In despair, rather radical
approaches have been proposed as e.g. string theory and loop quantum gravity, but
we think that it is fair to say that none of these approaches has reached its goal, up
to now, nor could either of them be ruled out, neither by empirical results nor by
inner theoretical reasons.

If one is less ambitious and takes into account, that gravitational forces tend to be
very small compared to other forces, one may consider, in a first step, gravity as an
external field, producing a curved spacetime, and treat quantum matter by quantum
field theory on such a background. One may then, in a second step, treat quantum
gravity as a quantum field fluctuating around a given background.
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The second step meets severe problems: the arising theory is nonrenormalizable,
which means that in every order of perturbation theory new interaction terms appear
whose coupling constants have to be determined by experiments. Moreover, the
causal structure of the theory is determined by the background metric, whereas
physics would require that it depends only on the full metric, including the quan-
tum fluctuations. Nevertheless, a consistent perturbative formulation was recently
presented by Brunetti, Rejzner and one of us in [7].

Surprisingly, already the first step is by no means trivial. The reason is, that
quantum field theory in its standard formulation heavily depends on the symmetries
of Minkowski space. These symmetries are used to define the vacuum and the
concept of a particle, and one can then, under quite general conditions, derive the
existence of scattering states and of an S-matrix.

But on a generic Lorentzian spacetime, no nontrivial symmetries exist, and as
a consequence, neither the concept of a vacuum state nor that of particles can be
intrinsically introduced. In particular, the classical picture of particles moving in an
empty spacetime is not supported by quantum field theory. The most spectacular
consequence of this fact is the evaporation of black holes as predicted by Hawking.

The problems of quantum field theory on a given curved back ground have been
solved within the last 20 years by using the concepts of algebraic quantum field
theory and by replacing techniques of operators on Fock space by methods from
microlocal analysis [25]. A compilation of references on algebraic quantum field
theory on curved spacetimes can be found in [3].

Algebraic quantum field theory was originally developed in order to understand
the relation between the local degrees of freedom of quantized fields and the
observed multi-particle states [17]. It was then observed by Dimock and Kay that
it provides a good starting point for formulating a theory on a curved spacetime
[13, 29]. The absence of a distinguished Hilbert space representation, however, was
a severe obstacle for extending the theory to nonlinear fields, the most prominent
being the energy momentum tensor.

For this purpose it was necessary to understand the singularities of correlation
functions. There was overwhelming evidence that the so-called Hadamard states
yield a class of states with the correct singularity structure. A direct characterization
of Hadamard states turned out to be rather complicated [30], and its use for the
determination of correlation functions of nonlinear fields seemed to be extremely
cumbersome.

The situation changed completely when Radzikowski discovered that the
Hadamard condition could equivalently be replaced by a positivity condition on
the wave front set of the 2-point function [41, 42]. This marked the breakthrough
for the modern theory of quantum fields on curved back grounds, and within a few
years it was possible to construct all kinds of composite fields [6] and to prove the
existence of renormalized time ordered products [5].

Renormalization, however, had still the problem that renormalization conditions
at different points of spacetime could not be compared with each other in the
absence of nontrivial symmetries. A new principle was needed, the principle of local
covariance [8]. This principle says that it is not meaningful to do physics on a special
spacetime; instead all structures should depend only on the local geometry. Based on
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this principle, Hollands and Wald were able to finish the renormalization program
[22, 23], which had been started by Brunetti and one of us [5]. One of the outcomes
of this generalization of algebraic quantum field theory is that it is meaningful to
consider the same field on different spacetimes.

A direct application of this fact is the use of the energy momentum tensor as a
source term for Einstein’s equation. But as long as gravity itself is not quantized
one has the problem to compare a quantum object with a classical object. On a
pragmatic level this may be solved by using the expectation value of the energy
momentum tensor. This might be reasonable as long as the fluctuations are small
enough. But here new problems arise. One is the fact that the correlation functions
of the energy momentum tensor diverge at coinciding points. One therefore looks at
appropriate averages; this, however, introduces a new parameter into the theory. The
other problem is even worse: whereas fields exist which can be considered to be the
same on different spacetimes, a corresponding identification of states on different
spacetimes does not exist.

The latter problem can presumably only be treated in a theory containing
quantized gravitational and matter fields. One may, however, restrict oneself to
situations with higher symmetries, as they arise in cosmological spacetimes of the
Friedmann–Robertson–Walker type. There, one may admit only states which are
invariant under the spatial symmetries. Still, this does not fix the states uniquely,
hence additional choices have to be introduced. Nevertheless, one can in this way
reproduce the standard cosmological model from first principles, by modelling the
matter-energy content of the universe entirely in terms of quantum fields rather than
effectively by means of a classical perfect fluid [18].

6.2 The Free Scalar Field and Its Normal Ordered Products

Classically, a configuration of a scalar field may be understood as a smooth function
on spacetime. Let C1.M/ be the set of all smooth functions on a spacetime M ,
and let Sol.M/ be the subset of smooth solutions of the Klein–Gordon equation.
Classical observables are functions on C1.M/ modulo functions which vanish on
solutions. The observables of the quantum theory form a suitable subspace on which
the algebraic structures of quantum theory can be defined. This subspace can be
characterized in the following way.

We consider a globally hyperbolic time oriented spacetime. On such a spacetime
the Klein–Gordon equation

P� D �rara C �RCm2
	
� D 0 ;

with curvature scalar R, curvature coupling parameter � and mass m, possesses
unique retarded and advanced Green’s functions �R;A considered as maps from
compactly supported densities to smooth functions. Their difference is the com-
mutator function �. A Hadamard solution of the Klein–Gordon operator P is a
distributional bisolution h with the properties:
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1. h.x; y/ � h.y; x/ D i.�.x; y//.
2. WF.h/ D f.x; x0I k; k0/ 2 WF.�/jk 2 V Cx g where V Cx is the closed forward

lightcone in T �x M .
3. h is a distribution of positive type.

We want to introduce an associative product ?h on a subspace F.M/ of the space
of maps fF W C1.M/ ! Cg by setting

.F ?h G/.�/ D
1X

nD0

„n
nŠ

�
ınF

ı�n
; h˝n

ınG

ı�n

�

.�/ : (6.1)

In order to make this definition meaningful we require for F 2 F.M/:

1. F is polynomial, therefore the sum over n is finite.
2. F is smooth in the sense of the calculus on locally convex spaces, where C1.M/

is equipped with its standard topology (uniform convergence of all derivatives on
any compact set). From these two conditions it follows that F is of the form

F.�/ D
NX

nD0
hfn; �˝ni

with compactly supported distributional densities fn onMn.
3. The wave front set of fn does not intersect .V C/n nor .V �/n. This condition

guarantees by Hörmander’s theorem on the multiplicability of distributions, that,
in view of the wave front set of the Hadamard solution, the summands in the
definition of the product are well defined.

The product is associative. Complex conjugation induces an involution on F.M/,

F ?h G D G ?h F ;

hence F.M/ gets the structure of a unital *-algebra, where the unit is the constant
function F.�/ � 1. The subspace fF 2 F.M/jF.�/ D 0 for � 2 Sol.M/g is
an ideal, and the quotient is the enlarged CCR-algebra. It contains as a subalgebra
the CCR-algebra generated by linear functionals of the form F.�/ D hf; �i with
a smooth density f on M and in addition all local polynomials in the field and its
derivatives,

F.�/ D
Z

f .jx.�//dvol.x/

where x 7! jx.�/ D f�C j 2 C1.M/ with @˛ .x/ D 0 for all multiindices ˛g
is the jet prolongation of �, and f is a smooth function on the jet bundle which is a
polynomial in � and its derivatives at every point x 2 M , and which has compact
spacetime support

suppF D
[

�

supp.x 7! f .jx.�// :
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The definition of the enlarged CCR-algebra depends on the choice of the
Hadamard solution h. Since two Hadamard solutions differ by a smooth symmetric
and real valued bisolution w, the arising algebras are isomorphic with the isomor-
phism

�w D exp
1

2
„
�

w;
ı2

ı�2

�

:

Every Hadamard solution hC w induces a family of coherent states by

!w;� .F / D .�wF /.�/

with � 2 Sol.M/. According to a result of Verch, the arising GNS-representations
are locally equivalent [49].

A further crucial ingredient for the interpretation of the theory are locally
covariant fields A. These are, for every spacetime M , linear maps AM from the
space of (compactly supported) test tensors to the algebra F.M/ such that, for every
isometric, time orientation and causality preserving embedding � W M ! N into a
larger spacetime N one has the relation

AM.f /.� ı �/ D AN .��f /.�/

where �� denotes the push forward of test tensors. In other words, a locally covariant
field is a natural transformation between the functor D of test tensor spaces and the
functor F of observable algebras, both based on the category of globally hyperbolic
spacetimes with isometric, time orientation and causality preserving embeddings as
morphisms.

In a first attempt one may look at a polynomial p.@˛�; ˛ 2 N
d
0 / in � and its

derivatives and set

AM.f /.�/ D
Z

f .x/p.@˛�.x//dvol.x/ :

But this definition violates the naturality condition for locally covariant fields since
there is no natural choice for the Hadamard solution, i.e. no choice which is
compatible with all possible embeddings of a spacetime into another one, a fact
which is responsible for the nonexistence of a vacuum state.

Let p.r/ be a polynomial in covariant derivatives (with respect to the Levi-Civita
connection) and consider the functionals

A.x/.�/ D ep.r/�.x/ :

Under the isomorphism �w, A.x/ transforms as

�wA.x/ D e
1
2p.r/˝p.r/w.x:x/A.x/ :
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We now use the fact, that w is the difference of 2 Hadamard solutions. Hadamard
solutions admit an asymptotic expansion

h.x; y/ D u.x; y/

�.x; y/
C

NX

nD0
vn.x; y/�.x; y/

n ln.2�.x; y//C whN .x; y/

D h
sing
N .x; y/C whN .x; y/ :

Here x; y are points in a geodesically convex open set, �.x; y/ is the signed square
of the geodesic distance between x and y, the functions u and vn are solutions of the
so-called transport equations and are uniquely determined by the local geometry. 
is a free parameter with the dimension of inverse length. whN is an 2N C 1 times
continuously differentiable function which depends on the choice of h. We omit the
�-prescription necessary for hsing

N to be well-defined, see [30].
We now set

Ah.x/ D e
1
2p.r/˝p.r/whN .x;x/A.x/

where N is larger than or equal to twice the degree of p, and find

�h�h0Ah0.x/ D Ah.x/ :

By expanding the exponential series we obtain a large class of locally covariant
fields. These correspond to Wick powers of the scalar field and its derivatives
regularised by point-splitting and suitable subtractions of derivatives of hsing

N . This
class may be enlarged by the �-independent locally covariant fields constructed
from the metric. Further details may be found e.g. in [16].

A locally covariant field of particular interest is the energy momentum tensor
Tab.x/. However, it is by no means intrinsically clear which locally covariant
field is the observable whose expectation value is the “correct” source term for
Einstein’s equation. Essentially this is due to the fact that gravity is sensitive to
absolute energy densities rather than energy density differences. Wald [52] and
later Hollands and Wald [24] have suggested that a locally covariant field should
satisfy standard commutation relations, covariant conservation raTab.x/.�/ D 0

and suitable analyticity conditions in order to be a meaningful energy momentum
tensor. For a free scalar field this implies that the most general energy momentum
tensor is of the form

Tab.x/.�/ D T 0ab.x/.�/C ˛1gab.x/C ˛2Gab.x/C ˛3Iab.x/C ˛4Jab.x/ ; (6.2)

where Gab is the Einstein curvature tensor whereas Iab and Jab are local curvature
tensors which are obtained as functional derivatives with respect to the metric of



6 Quantum Field Theory on Curved Spacetime and the Standard Cosmological Model 119

the action functionals
R p�gR2dvol.x/ and

R p�gRabR
abdvol.x/ respectively.

Moreover, a possible “model” T 0ab is the functional

T 0ab.x/.�/ D T class
ab .x/.�/C lim

x!y

�

Dab � 1

3
gabPx

�

whN .x; y/ N � 1 (6.3)

where T class
ab is the classical energy momentum tensor of the scalar field, Dab

is a second order bi-differential operator defined by limx!y Dabw.x; y/ D
hw; ı

2

ı�2
iT class

ab .x/.�/ and the modification term � 1
3
gabPx is necessary in order to

have a covariantly conserved T 0ab [35]. The four parameters ˛i are free parameters
which can not be determined intrinsically within QFT on curved spacetimes, but
only by measurements or within a more fundamental theoretical framework.

An alternative “model” T 0ab can be obtained by taking the functional derivative
with respect to the inverse metric of the “one-loop effective Lagrangean”

L0.�/.x/ D Lclass.�/.x/C
�

whdWS
N ;

ı2

ı�2

�

Lclass.�/.x/ N � 1:

Here whdWS
N is the regular part of the deWitt-Schwinger Hadamard solution hdWS

which is a formal series in �.x; y/ with purely geometric coefficients [19].

6.3 The Standard Cosmological Model in Quantum Field
Theory on Curved Spacetimes

In the standard cosmological model the universe is modelled by a Friedmann–
Lemaître–Robertson–Walker (FLRW) spacetime .M; g/ with manifold M D I �
R
3 � R

4 and metric g D dt ˝ dt � a2.t/dxi ˝ dxi . We consider the case where
the spatial slices are diffeomorphic to R

3 for simplicity and because this is favoured
by observations. Here t is cosmological time, whereas the scale factor a.t/ is a
smooth non-negative function whose logarithmic t-derivative is the Hubble rate H ,
which is assumed to be strictly positive in what follows. Further convenient time
variables are the conformal time 
 , the scale factor a and the redshift z WD a0=a�1,
where a0 D 1 is the scale factor of today. These time variables are related by
dt D ad
 D da

aH D � dz
.1Cz/H .

Given the high symmetry of .M; g/ and the Einstein equation Gab D 8�Tab,
the energy momentum tensor Tab must be of perfect fluid form and thus determined
by the energy density � D .@t /

a.@t /
bTab and pressure p, which are related by the

equation of state p D p.�/. Moreover, the Einstein equation is equivalent to the
(first) Friedmann equation

H2 D 8�G

3
�
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and a conservation equation. According to the standard model of cosmology—the
ƒCDM-model—our universe contains matter, radiation, and Dark Energy, modelled
macroscopically as perfect fluids with equation of state p D w�, w D 0; 1

3
;�1

for matter, radiation and Dark Energy (assuming that the latter is just due to a
cosmological constant) respectively. Consequently, the Friedmann equation can be
conveniently rewritten as

H2

H2
0

D �ƒCDM

�0
D �ƒ C �m

a3
C �r

a4
; �0 D 3H2

0

8�G
; (6.4)

where H0 is the present Hubble rate—the Hubble constant—and the constants �ƒ,
�m, �r denote the present fractions of the energy density due to Dark Energy,
matter and radiation respectively. Observations indicate approximately

�m D 0:3; �r D 10�4; �ƒ D 1��m ��r (6.5)

see [1] for the latest exact values from the Planck collaboration. In the context
of cosmology the terms “matter” and “radiation” subsume all matter-energy with
the respective macroscopic equation of state such that e.g. “radiation” does not
encompass only electromagnetic radiation, but also the three left-handed neutrinos
present in standard model of particle physics (SM) and possibly so-called Dark
Radiation, and “matter” subsumes both the baryonic matter which is in principle
well-understood in the SM and Dark Matter. Here, Dark Matter and Dark Radiation
both quantify contributions to the macroscopic matter and radiation energy densities
which exceed the ones expected from the knowledge of the SM and are believed
to originate either from fields not present in the SM or from other sources, i.e.
modifications of classical General Relativity.

Notwithstanding, at least the contributions to the macroscopic matter and
radiation energy densities which are in principle well-understood originate micro-
scopically from excitations of quantum fields, thence it should be possible to derive
those from first principles within QFT on curved spacetimes. Such an analysis of the
standard cosmological model within QFT on curved spacetimes has been performed
by one of us in [18] and we shall review it in what follows.

A comprehensive analysis from this perspective could proceed as follows. One
considers the full standard model of particle physics plus potential other fields and
interactions as a perturbative interacting QFT on curved spacetime. One then aims
to find a pair .!; g/, where ! is a Hadamard state on the algebra of this field model
and g is a metric on the manifold M D I � R

3 � R
4 of FLRW type, such that (a)

.!; g/ is a solution of the semiclassical Einstein equation

Gab D 8�G!.Tab/

where Tab is the energy momentum tensor of the field model and (b) (6.4) are (6.5)
are satisfied up to suitably small corrections. Unfortunately such an analysis is quite
involved, but we can consider a number of simplifications. First, we disregard all
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field interactions. This is a legitimate approximation if we consider the cosmological
evolution only after the primordial synthesis of light nuclei—the so-called Big
Bang Nucleosynthesis (BBN)—as field interactions are usually assumed to be
irrelevant for the large-scale properties of the quantum state after this era. In the
standard cosmological model, this enters by assuming that the each component of
the perfect fluid in (6.4) satisfies an individual conservation equation. As a further
simplification, we disregard the spin of the quantum fields and model all massive
fields, i.e. “matter”, by a single massive scalar field, and all massless fields, i.e.
“radiation”, by a single massless scalar field, where both fields are considered to
be conformally coupled to the scalar curvature (� D 1

6
). This is done for ease of

presentation as computations with higher spin fields are in principle straightforward,
see for instance [10, 11]; the conformal coupling � D 1

6
is chosen because it

simplifies computations and because the massless Dirac equation and the Maxwell
equation are invariant under conformal isometries. Finally, provided one is able to
assign a state ! to a FLRW metric g in a coherent way, ! is in general a non-
trivial functional of g and thus obtaining an explicit solution of the semiclassical
Einstein equation is at best difficult. In a recent yet unpublished work, Pinamonti
and Siemssen have proven by a fixed point argument that the semiclassical Einstein
equation can be uniquely solved for a linear scalar field model and a large class of
initial conditions on a Cauchy surface, but for a quantitative analysis one needs to
know the solution explicitly. We thus solve the semiclassical Einstein equation in
the following approximate sense. We assume that the FLRW spacetime is given and
determined by (6.4) and (6.5). On this spacetime we seek to find a pair of quantum
states !m and !0 for the massive and massless scalar field such that the sum of the
energy densities in this states satisfies

!0.�/C !m.�/

�0
D �ƒ C �m

a3
C �r

a4
D �ƒCDM

�0
(6.6)

and (6.5) up to suitably small corrections in the time interval of interest z 2 �0; 109�,
where z D 0marks the present and z D 109 is the redshift at which BBN took place.

In order to follow this program, it is useful to have at ones disposal a map which
assigns a state ! to a FLRW metric g in a given coordinate system; indeed this is
necessary in order for the semiclassical Friedmann equation 3H2 D 8�G!.�/ to be
well-defined in the first place. Such a construction is provided by the so-called states
of low energy introduced by Olbermann [36]. These states minimize the energy
density integrated in (cosmological) time with a sampling test function f and are
pure, Gaussian, isotropic and homogeneous states of Hadamard type. Their two-
point Wightman function is (barring an �-prescription) of the form

!.x; y/ D 1

8�3a.
x/a.
y/

Z

R3

d Ek �k.
x/�k.
y/ei Ek.Ex�Ey/ ;
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where the modes �k satisfy the ordinary differential equation

�

@2
 C k2 Cm2a2 C
�

� � 1

6

�

Ra2
�

�k.
/ D 0 (6.7)

and the normalisation condition

�k@
�k � �k@
�k D i : (6.8)

Here, k D jEkj and � denotes complex conjugation. The modes �k , which
determine the state, are obtained by choosing arbitrary but fixed reference modes.
The Bogoliubov coefficients in this mode basis are suitable functionals of the
reference modes and the sampling function f . Olbermann has proven the Hadamard
property of these states only for the case � D 0, but one can show that they
are at least sufficiently regular in order to compute the energy density also
in the case � D 1

6
. If � D 1

6
and m D 0, then the Hadamard property

follows from the fact that these states are related to the Minkowski vacuum
state by a conformal isometry. In the following, we set � D 1

6
. A further

assignment of a state to a FLRW spacetime in a given coordinate system is
given by the so-called adiabatic states of order 0 introduced in [38] and further
developed in [26, 34]. These are defined by the modes which satisfy (6.7) and
the initial conditions �k.
/j
D
0 D Q�k.
/j
D
0 , @
�k.
/j
D
0 D @
 Q�k.
/j
D
0 ,
where

Q�k.
/ D 1
p
2W.k; 
/

exp

�

�i
Z 



0

W.k; 
 0/d
 0
�

; W.k; 
/ D
p
k2 Cm2a2:

(6.9)

The functions Q�k.
/ solve (6.8) exactly but (6.7) only approximately with error
terms quantified by Hm

W 2 and @
Hm

W 3 . A detailed discussion of the error terms can be
found in [37].

In the ƒCDM model, the radiation contribution �r
a4

to the energy density is
mostly of thermal nature, while the matter contribution �m

a3
is mostly due to

Dark Matter, which in some scenarios is believed to be of thermal origin as
well. Motivated by this we look for states which satisfy (6.6) and (6.5) among
suitable “thermal excitations” of states of low energy. A fully satisfactory gen-
eralisation of the concept of thermal equilibrium to general curved spacetimes
or even FLRW ones does not exist so far. Probably the most elaborated idea is
the so-called local thermal equilibrium approach, see e.g. [45, 50] for a review.
Here we take a more pragmatic approach and consider the states introduced
in [11]. Given a pure, Gaussian, isotropic and homogeneous Hadamard state !
specified by modes �k , one can construct a family of Gaussian Hadamard states
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!ˇ;aF by defining the two-point Wightman function (up to an �-prescription)
as

!.x; y/ D 1

8�3a.
x/a.
y/

Z

R3

d Ek ei Ek.Ex�Ey/
 
�k.
x/�k.
y/

1 � e�ˇk0 C �k.
x/�k.
y/

eˇk0 � 1

!

;

(6.10)

with k0 WD
q
k2 Cm2a2F . If �k are the modes of a state of low energy, these states

match the almost equilibrium states introduced by Küskü in [33] up to the form
of k0. The Hadamard property of the states defined by (6.10) follows from results
of [40]. In the massless case, these states are independent of aF and satisfy the
conformal KMS condition with respect to the conformal Killing vector @
 . In the
massive case, they are considered to describe approximately the quantum state of
a field which has been in thermal equilibrium in the distant past, and has “frozen
out” of equilibrium at the time a D aF . This corresponds to the phenomenological
picture behind Dark Matter of thermal origin in the standard literature see e.g. [32].

Given this choice of quantum states we are left with the cumbersome task to
compute the energy density in these states. To this avail, we can rewrite the singular
part hsing

N .x; y/ of a Hadamard solution in terms of a Fourier integral in order to
match the mode expansion of the states at hand, see [12, 14, 40, 43]. In this way we
obtain a Fourier integral expression for the regular part whN .x; y/ of the relevant two-
point Wightman function. The energy density is obtained by applying to this regular
object a second order bi-differential operator and then taking the limit x ! y,
cf. (6.3). This is well-defined and independent of N if N � 1. As a result, we
obtain the energy density as a convergent integral over k. In the massless case,
this integral can be computed analytically. In the massive case however, both the
integrand and the integral have been computed in [18] partly numerically and partly
using analytical approximations. The reasons are manifold. To name a few, the mode
equation (6.7) can not be solved analytically on FLRW spacetimes of the form (6.4)
if m > 0. Moreover, even a numerical solution fails to be feasible for m � H0—
which is the realistic case as H0 ' 10�33 eV—because the modes oscillate heavily.
To overcome the latter problem the approximate adiabatic modes Q�k.
/, cf. (6.9),
have been used as reference modes for the computation of the modes of the state of
low energy, as they approximate the exact adiabatic modes of order zero particularly
well exactly in the regimem � H .

Altogether the following results can be obtained. To discuss these, we rewrite the
total energy density of the massless and massive conformally coupled scalar fields
in the respective generalised thermal states (6.10) defined with respect to states of
low energy as follows

!0.�/C !m.�/

�0
D �mgvac C �0gvac C �mgth C �0gth

�0
C 	

H4

H4
0

C�ƒ C ı
H2

H2
0

C �
J00

H4
0

:

(6.11)
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�ƒ, ı and � parametrise the freedom in the definition of the energy density as
per (6.2). The number of free parameters in this equation has been reduced to three,
because Iab and Jab are proportional in FLRW spacetimes. We take the point of view
that ı, which effectively renormalises Newton’s constant, is not a free parameter
because Newton’s constant has been measured already. In order to do this, we have
to fix a value for the inverse length scale  in the singular part of a Hadamard
solution hsing

N .x; y/, we do this by confining 1= to be a scale in the range in which
the strength of gravity has been measured. Because of the smallness of the Planck
length, the actual value of 1= in this range does not matter as changing 1= in this
interval gives a negligible contribution to the energy density. One could also take a
more conservative point of view and consider ı to be a free parameter, in this case
comparison with cosmological data, e.g. from Big Bang Nucleosynthesis, would
presumably constrain ı to be very small once 1= is in the discussed range.

On this occasion, we would like to highlight the point of view on the so-called
cosmological constant problem taken here, as well as in most works on QFT on
curved spacetimes in the algebraic approach and e.g. the review [4]. It is often said
that QFT predicts a value for the cosmological constant ƒ and thus for �ƒ which
is way too large in comparison to the one measured. This conclusion is reached
by computing one or several contributions to the vacuum energy in Minkowski
spacetime ƒvac and finding them all to be too large, such that, at best, a fine-tuned
subtraction in terms of a negative bare cosmological constant ƒbare is necessary
in order to obtain the small value ƒvac C ƒbare we observe. Here, we assume the
point of view that it is not possible to provide an absolute definition of energy
density within QFT on curved spacetimes, and thus neither ƒvac nor ƒbare have
any physical meaning by themselves; onlyƒvac Cƒbare is physical and measurable
and any cancellation which happens in this sum is purely mathematical. The fact
that the magnitude of ƒvac depends on the way it is computed, e.g. the loop or
perturbation order, cf. e.g. [44], is considered to be unnatural following the usual
intuition from QFT on flat spacetime. However, it seems more convincing to us to
accept that ƒvac and ƒbare have no relevance on their own, which does not lead
to any contradiction between theory and observations, rather than the opposite. In
the recent work [21] it is argued that a partial and unambiguous relevance can be
attributed to ƒvac by demanding ƒbare to be analytic in all coupling constants and
masses of the theory; taking this point of view, one could give the contribution to
ƒvac which is non-analytic in these constants an unambiguous meaning. Indeed the
authors of [21] compute a non-perturbative and hence non-analytic contribution to
ƒvac, which turns out to be small. In the view of this, one could reformulate the
above statement and say that contributions to ƒvac and ƒbare which are analytic in
masses and coupling constants have no physical relevance on their own.

The term in (6.11) proportional to 	 , which is not present in the ƒCDM-model,
appears due to the so-called trace anomaly, which is a genuine quantum and state-
independent contribution to the quantum energy momentum tensor, see e.g. [51].
This term is fixed by the field content, 	 ' 10�122 for two scalar fields. As
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H < H0z2 in theƒCDM-model for large redshifts, this term can be safely neglected
for z < 109.

The first terms in (6.11) denote the genuinely quantum state dependent con-
tributions to the energy densities of the two quantum fields. We have split these
contributions into parts which are already present for infinite inverse temperature
parameter ˇ in the generalised thermal states, and thus could be considered as
contributions due to the states of low energy as generalised vacuum states (�mgvac,
�0gvac), and into the remaining terms, which could be interpreted as purely thermal
contributions (�mgth, �0gth). One can show that, up to the freedom parametrised by�ƒ,
ı and �, �0gvac D 0 for arbitrary sampling functions f , whereas �mgth=�ƒCDM � 1

for small masses m ' H0 and large masses m � H0 if the sampling function
f defining the state of low energy has sufficiently large support in time. This
generalises results obtained by Degner on de Sitter spacetime [12] and indicates
that states of low energy with broad sampling functions are reasonable generalised
vacuum states on FLRW spacetimes (Fig. 6.1).

As for the thermal contributions, one finds in the massless case

�0gth D �r

a4
with �r D �2

30ˇ4
:

Up to degree of freedom factors, this gives the ƒCDM value �r ' 10�4 if the
temperature parameter 1=ˇ is in the range of the Cosmic Microwave Background
temperature 1=ˇ ' 2:7K. In the massive case, one can take typical values of ˇ,
aF and m from Chapter 5.2 in [32] computed by means of effective Boltzmann

Fig. 6.1 ��mgvac=�ƒCDM for z < 1 for various values of m (rescaled for ease of presentation). The
dotted line corresponds to m D 100H0 and � D 10�2, the dashed line to m D 10H0 and � D 1

and the solid line to m D H0 and � D 102 . One sees nicely how the energy density is minimal in
the support of the sampling function at around z D 10�2
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equations. A popular candidate for Dark Matter is a weakly interacting massive
particle (WIMP), e.g. a heavy neutrino, for which [32] computes

xF D ˇaFm ' 15C 3 log.m=GeV/ aF ' 10�12.m=GeV/�1 :

Using this one finds for largem

�mgth ' 1

.2�/3=2
m

ˇ3a3
x
3
2

F e
�xF ;

and thus �m ' 0:3 for m ' 100GeV.
At this stage, we have already seen that there exist states for the field model under

consideration for which the energy density in the time interval z 2 Œ0; 109� is of the
form

!0.�/C !m.�/

�0
D �ƒ C �m

a3
C �r

a4
C �

J00

H4
0

(6.12)

with ƒCDM values for �m, �r and �ƒ. This is the desired result up to the term
� J00
H4
0

which is not present in the ƒCDM model, but quantified by the free parameter

�. To analyse the influence of this term, we solve the equation

H2

H2
0

D �ƒ C �m

a3
C �r

a4
C �

J00

H4
0

: (6.13)

As J00 contains second derivatives of H , this equation can be rewritten as a second
order ordinary differential equation for H.z/ and solved by choosing e.g. ƒCDM
initial conditions at z D 0. This analysis is consistent as the derivation of (6.12)
does not only hold for ƒCDM-backgrounds (6.4), but also for backgrounds of the
form (6.13). One finds that for large redshifts z, the solution of (6.13) is of the form

H2

H2
0

D �ƒ C �m

a3
C
f�r.�/

a4

with f�r.�/ � �r , thus the term �J00 effectively generates additional energy density
of radiation type in the early universe, i.e. Dark Radiation. Surprisingly, one finds
lim�#0f�r.�/ D �r , but lim�"0f�r.�/ D 1. This is well in line with earlier results
on the stability of the Einstein equation with additional higher order derivative
terms, e.g. [2, 15, 20, 31, 39, 46]. The value of f�r can be constrained by observations
of the primordial fractions of light nuclei as predicted by BBN, since the synthesis
of these nuclei depends sensitively on the Hubble rate at z ' 109. It turns out
that f�r.�/ is in conflict with observations for � < 0, but that the BBN data are
compatible with 0 	 � < 2 � 10�15 if all Dark Radiation is attributed to the origin
discussed here.
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The value of � can be constrained also by other means. On the one hand, a
further bound on � can be obtained by analysing the effects of higher derivative
contributions to the gravitational Lagrangean in the context of Inflation. In fact,
an early inflationary model proposed by Starobinsky in [47] is based on an �J00
contribution to the energy density. Confronting this inflationary model with current
Cosmic Microwave Background data yields � ' 10�113 [27]. Thus, if Inflation
occurred due to the �J00 contribution to the energy density, then � is too small for
generating a considerable amount of Dark Radiation. However, if Inflation has a
different origin or did not occur at all, then one obtains the lower bound � > 10�113.
Finally, an upper bound on � can be obtained by considering the Newtonian limit of
the semiclassical Einstein equation. In this limit, the higher order derivative terms
Iab and Jab in (6.2) generate two Yukawa corrections to the Newtonian potential of a
point mass of opposite sign [48]. Assuming that these corrections don’t cancel on the
relevant length scales, one can obtain bounds on the strength and typical length scale
of these Yukawa terms from torsion-balance experiments [28] and consequently the
upper bound � < 10�60 [9]. Again, this upper bound would imply that � is too small
for generating a considerable amount of Dark Radiation. However, it is still possible
that the aforementioned Yukawa corrections cancel each other on the length scales
relevant for the experiments described in [28], such that � could be as large as our
upper bound, which in this case would give a real bound on one and hence both
Yukawa corrections. Moreover, the bounds inferred from [28] and from the analysis
reviewed here stem from phenomena on completely different length scales. As a
rough estimate we note that the diameter of our observable universe, which today is
about 6=H0 ' 1027 m, was at e.g. z D 109 still 1018 m and thus much larger than the
submillimeter scales relevant for the torsion-balance experiments. Thus it could be
that effects we have not considered yet, e.g. state-dependent effects which are due to
the small-scale structure of the quantum states we have fixed only on cosmological
scales so far, affect the comparison between the two different sources of input for
the determination of �.

We conclude that a more fundamental understanding of the standard cosmo-
logical model appears to be possible within QFT on curved spacetimes. In this
framework one even finds a new free parameter not present in the standard model.
This parameter can potentially account for Dark Radiation, the existence and nature
of which are currently topics of active research.
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Chapter 7
Quantum Probability Theory
and the Foundations of Quantum Mechanics

Jürg Fröhlich and Baptiste Schubnel

7.1 A Glimpse of Quantum Probability Theory
and of a Quantum Theory of Experiments

By and large, people are better at coining expressions than at filling them with
interesting, concrete contents. Thus, it may not be very surprising that there are
many professional probabilists who may have heard the expression but do not
appear to be aware of the need to develop “quantum probability theory” into
a thriving, rich, useful field featured at meetings and conferences on probability
theory. Although our aim, in this essay, is not to contribute new results on quantum
probability theory, we hope to be able to let the reader feel the enormous potential
and richness of this field. What we intend to do, in the following, is to contribute
some novel points of view to the “foundations of quantum mechanics”, using
mathematical tools from “quantum probability theory” (such as the theory of
operator algebras).

The “foundations of quantum mechanics” represent a notoriously thorny and
enigmatic subject. Asking 25 grown up physicists to present their views on the
foundations of quantum mechanics, one can expect to get the following spectrum of
reactions1: Two will refuse to talk—alluding to the slogan “shut up and calculate”—
two will say that the problems encountered in this subject are so difficult that it

1This story is purely fictional, but quite plausible.
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might take another 100 years before they will be solved; five will claim that the
“Copenhagen Interpretation”, [75], has settled all problems, but they are unable to
say, in clear terms, what they mean; three will refer us to Bell’s book [9] (but admit
they have not understood it completely); two confess to be “Bohmians” [25] (but
do not claim to have had an encounter with Bohmian trajectories); two claim that
all problems disappear in the Dirac–Feynman path-integral formalism [23, 24, 30];
another two believe in “many worlds” [28] but make their income in our’s, and
two advocate “consistent histories” [41]; two swear on QBism [36], (but have never
seen “les demoiselles d’Avignon”); two are convinced that the collapse of the wave
function [38]—spontaneous or not—is fundamental; and one thinks that one must
appeal to quantum gravity to arrive at a coherent picture, [60].

Almost all of them are convinced that theirs is the only sane point of view.2

Many workers in the field have lost the ability to do technically demanding work or
never had it. Many of them are knowingly or unknowingly envisaging an extension
of quantum mechanics—but do not know how it will look like. But some claim that
“quantum mechanics cannot be extended” [18], (perhaps unaware of the notorious
danger of “no-go theorems”). See also [66, 72]

At least fifteen of the views those 25 physicists present logically contradict
one another. Most colleagues are convinced that somewhat advanced mathematical
methods are superfluous in addressing the problems related to the foundations of
quantum mechanics, and they turn off when they hear an expression such as “C �-
algebra” or “type-III factor”. Well, it might just turn out that they are wrong! What
appears certain is that the situation is somewhat desperate, and this may explain
why people tend to become quite emotional when they discuss the foundations of
quantum mechanics; (see, e.g., [74]).

When the senior author had to start teaching quantum mechanics to students,
many years ago, he followed the slogan “shut up and calculate”—until he decided
that the situation described above, namely the fact that we do not really understand,
in a coherent and conceptual way, what that most successful theory of physics called
“quantum mechanics” tells us about Nature, represents an intellectual scandal.

Our essay will, of course, not remove this scandal. But we hope that, with
some of our writings, (see also [32, 34]), we may be able to contribute some kind
of intellectual “screw driver” useful in helping to unscrew3 the enigmas at the
root of the scandal, before very long. We won’t attempt to extend or “complete”
quantum mechanics (although we bear people no grudge who try to do so, and
we wish them well). We are convinced that starting from simple, intuitive, general
principles (“information loss” and “entanglement generation”) and then elucidating

2And that Heisenberg’s 1925 paper [46] cannot be understood.
3“dévisser les problèmes” (in reference to A. Grothendieck).
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the mathematical structure inherent in quantum mechanics will lead to a better
understanding of its deep message. (Of course, we realize that our hope is lost
on people who are convinced that the mysteries surrounding the interpretation
of quantum mechanics can be unravelled without any use of somewhat advanced
mathematical concepts.)

Just to be clear about one point: We are not claiming to present any “revolution-
ary” new ideas; and we do not claim or expect to get much credit for our attempts.

But, by all means, let’s get started! Quantum mechanics is “quantum”, and it is
intrinsically “probabilistic” [11, 27]. We should therefore expect that it is intimately
connected to quantum probability theory, hence to “non-commutative measure
theory”, etc. However, in the end, “quantum mechanics is quantum mechanics and
everything else is everything else!”4

7.1.1 Might Quantum Probability Theory be a Subfield
of (Classical) Probability Theory?

And—if not—what’s different about it? These questions are related to one con-
cerning the existence of hidden variables. The first convincing results on hidden
variables and on “Bell non-locality” were brought forward by Kochen and Specker
[51] and (independently) by Bell [7–9]. These matters are so well known, by now,
that we do not repeat them here. The upshot is that, loosely speaking, quantum
probability theory cannot be imbedded in classical probability theory (except in the
case of a two-level system).

The deeper problems of quantum mechanics can probably only be understood if
we admit a notion of time, introduce time-evolution, proceed to consider repeated
measurements, i.e., time-ordered sequences of observations or measurements result-
ing in a time-ordered sequence of events, and understand in which way information
gets lost for ever, in the course of time evolution. (We believe that this will lead
to an acceptable “ontology” of quantum mechanics [2, 25]) not involving any
fundamental role of the “observer”.)

In both worlds, the classical and the quantum world, physical quantities or
(potential) properties are represented by self-adjoint operators, a D a�, and
possible events by spectral projections,…, or certain products thereof (POVM’s; see
Appendix 7.4.A to Sects. 7.4 and 7.5.4). A successful measurement or observation
of a physical quantity or property represented by an operator a D a� results in

4“The one thing to say about art is that it is one thing. Art is art-as-art and everything else is
everything else.” Ad Reinhardt, [63].
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one of several possible events, …1; : : : ;…k (spectral projections of a), with the
properties that

.i/ …2
˛ D …˛ D …�̨; ˛ D 1; : : : ; k;

.ii/ …˛…ˇ D ı˛ˇ…˛;

.iii/
kX

˛D1
…˛ D 1:

(7.1)

Suppose we carry out a sequence of mutually “independent” measurements or
observations of physical quantities, a1; : : : ; an, ordered in time, i.e., a1 before a2
before a3 . . . before an (a1 � a2 � : : : � an). A physical theory should enable us to
predict the probabilities for all possible “histories”,

hn1.˛/ D f….1/
˛1
; : : : ;….n/

˛n
g;

of events, where ….i/
1 ; : : : ;…

.i/

ki
are the possible events resulting from a successful

measurement of ai , i D 1; : : : ; n. On the basis of what prior knowledge? Well, we
must know the time evolution of physical quantities and the “state”,!, of the system,
S , we observe. That means that, given a state !, there should exist a functional,
Prob! , that associates with each history f….1/

˛1 ; : : : ;…
.n/
˛n g—but for what family of

histories, i.e., for which properties a1; : : : ; an?—a probability

0 	 !.˛1; : : : ; ˛n/ � Prob!f….1/
˛1
; : : : ;….n/

˛n
g 	 1: (7.2)

By property (iii) in Eq. (7.1),

X

˛1;:::;˛n

!.˛1; : : : ; ˛n/ D 1; (7.3)

because Prob! is normalized such that Prob!f1;1; : : :g D 1. In a classical theory,
the projections f….i/

˛i gki˛iD1, i D 1; : : : ; n, are characteristic functions on a measure
space, MS , and a state, !, is a probability measure on MS . It then follows from
property (iii) that

kiX

˛D1
Prob!f….1/

˛1
; : : : ;….i/

˛ ; : : : ;…
.n/
˛n

gD Prob!f….1/
˛1
; : : : ;….i�1/

˛i�1
;….iC1/

˛iC1
; : : : ;….n/

˛n
g;

(7.4)

for arbitrary i D 1; : : : ; n.
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Fig. 7.1 Beam of photons passing through polarization filters

If we consider a quantum mechanical system with finitely many degrees of
freedom then the projections f….i/

˛i g are orthogonal projections on a separable
Hilbert space, H, and, by Gleason’s theorem [39], ! is given by a density matrix,
�! , on H. Moreover, according to [50, 54, 64, 76],

Prob!f….1/
˛1
; : : : ;….n/

˛n
g D TrH

�
….n/
˛n
: : :….1/

˛1
�!…

.1/
˛1
: : : ….n/

˛n

	
: (7.5)

The problem with Eq. (7.5) is that, most often, it represents physical and
probability-theoretical nonsense. For example, it is usually left totally unclear what
physical quantities or properties of S will be measurable (i.e., which family of
histories will become observable), given a time evolution 
t;s and a state !. But
such problems do not stop people from studying Eq. (7.5) again and again—and we
are no exception. To address one of the key problems with Eq. (7.5), we study an
example.

We consider a monochromatic beam of light, which, according to Einstein [26],
consists of individual photons of fixed frequency. We then bring three filters into the
beam that produce linearly polarized light. The direction of polarization is given by
an angle � that can be varied by rotating the filter around the axis defined by the
beam; see Fig. 7.1.

With the filter i , we associate two possible events

…
.i/
C $ a photon passes through filter i

….i/� D 1 �….i/
C $ a photon does not pass through filter i:

Experimentally, one finds that, for any initially unpolarized beam of light, (meaning
that the photons are all prepared in a state !0 / 1

2
TrC2 .�/),

Prob!0f….i/
C ;…

.j /
C g D 1

2
cos2.�i � �j /; i < j; (7.6)
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if only filters i and j are present, with 1 	 i < j 	 3. It follows from Eq. (7.6) that

Prob!0f….i/
C ;…

.j /� g D 1

2
sin2.�i � �j /; i < j; (7.7)

the probability that a photon passes the first filter, i , being 1=2, because the initial
beam is unpolarized (or circularly polarized). Formulae (7.6) and (7.7) can be
tested experimentally by intensity measurements before and after each filter. If the
projections….i/

˙ were characteristic functions on a measure space, Mphoton, then we
would have that

Prob!0f….1/
C ;…

.3/� g 	 Prob!0f….1/
C ;…

.2/� g C Prob!0f….2/
C ;…

.3/� g: (7.8)

For,

Prob!0f….1/
C ;…

.3/� g D Prob!0f….1/
C ;…

.2/� ;….3/� g C Prob!0f….1/
C ;…

.2/
C ;…

.3/� g
	 right side of Eq. (7.8);

(7.9)

where Eq. (7.9) follows from the sum rule (7.4), and the upper bound (7.8) from the
trivial inequality 0 	 …

.i/

˙ 	 1. Plugging expression (7.7) into (7.8). we conclude
that

1

2
sin2.�1 � �3/ 	 1

2
sin2.�1 � �2/C 1

2
sin2.�2 � �3/: (7.10)

Setting �1 D 0, �2 D �=6 and �3 D �=3, Eq. (7.10) would imply that
3=8 	 1=8C1=8, which is obviously wrong! What is going on? It turns out that the
sum rule (7.9) is violated. The reason is that the projections ….2/

˙ and ….3/

˙ do not

commute. This fact is closely related to non-vanishing interference between ….2/
C

and ….2/� analogous to the interference encountered in the double-slit experiment.
Interference between….2/

C and ….2/� is measured by

I.….2/
C ;…

.2/� j ….1/
˛ ;…

.3/

ˇ / WD TrH.…
.3/

ˇ …
.2/
C …

.1/
˛ �!0…

.1/
˛ …

.2/� …
.3/

ˇ /: (7.11)

Choosing ˛ D C and ˇ D � (for example), we find a non-vanishing interference
term, which explains why the sum rule (7.9) is violated. What is the message? The
first filter, 1, may be interpreted as “preparing” the photons in the beam hitting the
filter 2 to be linearly polarized as prescribed by the angle �1. In our experimental
set-up there is no instrument measuring whether a photon has passed filter 2, or not.
The only measurement is made after filter 3, where either a photon triggers a Geiger
counter to click, or there is no photon triggering the Geiger counter. Let us denote
the probability for the first event (Geiger counter clicks) by pC, the second by p�.
The histories contributing to p� are
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with p� D pC� C p�� . These two histories show interference. Given that a photon
has passed filter 1, expressions (7.6) and (7.7) appear to imply that

pC� D cos2.�1 � �2/ sin2.�2 � �3/
p�� D sin2.�1 � �2/:

(7.12)

The unique history contributing to pCappears to be

with

pCC D cos2.�1 � �2/ cos2.�2 � �3/;

and, indeed,

pCC C pC� C p�� D 1:

These findings can be accounted for by associating with the event “C” the operator

XC D …
.3/
C …

.2/
C

and with the event “�” the operators

XC� D ….3/� …
.2/
C and X�� D ….2/� :

Then,

X�CXC C .XC� /�XC� C .X�� /�X�� D 1:

It should however be noted that

XCX�C CXC� .XC� /� CX�� .X�� /� ¤ 1:
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For this reason, some people may prefer to replace XC by the pair X1 WD …
.3/
C …

.2/
C ,

X2 WD …
.3/
C ….2/� , and to set X3 WD XC� , X4 WD ….3/� ….2/� . Then,

4X

˛D1
X �̨X˛ D

4X

˛D1
X˛X

�̨ D 1: (7.13)

The family .X1;X2;X3;X4/ is called (the “square root” of) a positive operator-
valued measure (POVM); (see [61], and Sects. 7.4.3 and 7.5.4). Note that

TrH.X2�!0X
�
2 / D Prob!0f….2/� ;…

.3/
C g

corresponds to the “virtual history”

which cannot be interpreted classically. This should not bother us, because no
measurement is carried out between filters 2 and 3.

There is a more drastic way to present these findings: Consider N filters in series,
the j th filter being rotated through an angle j�=2N . The probability for an initially
vertically polarized photon .�0 D 0/ to be transmitted through all the filters is then
given by

pC D Prob!�0D0
f….1/
C ; : : : ;…

.N/
C g D

�
cos

� �

2N

��2N �!
N!1 1: (7.14)

If however, all filters, except for the N th one, are removed, then

p0C WD Prob!�0D0
f….N/
C g D cos2

��

2

�
D 0: (7.15)

If ….1/
C ; : : : ;…

.N/
C were “classical events”, i.e., non-negative random variables, then

one would have that pC 	 p0C: (See [9, 55] for closely related arguments.)
Actually, the discussion presented above, although often repeated, is somewhat

misleading. The only measurement takes place after the last filter and is supposed
to determine whether a photon has passed all the filters, or not. The corresponding
physical quantity corresponds to the operators ….N/

˙ , where N is the label of the
last filter, and the measurement consists in verifying whether a Geiger counter
placed after the last filter has clicked, or not. The filters have nothing to do with
measurements, but determine (or, at least, affect) the form of the time evolution of
the photons. The use of POVM’s in discussing experiments like the ones above is not
justified at a fundamental, conceptual level. It merely substitutes for a more precise
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understanding of time-evolution that involves including the filters in a quantum-
mechanical description. It appears that, often, POVM’s are used to cover up a lack
of understanding of the time-evolution of large quantum systems. The role they play
in a quantum theory of experiments is briefly described in Sect. 7.5.4.

A more compelling way of convincing oneself that quantum probability cannot
be imbedded in classical probability theory than the one sketched above consists
in studying correlation matrices of families of (non-commuting) possible events in
two independent systems. One then finds that the numerical range of possible values
of the matrix elements of such correlation matrices is strictly larger in quantum
probability theory than in classical probability theory, as discovered by Bell [9, 71].
See [51] for an alternative approach.

7.1.2 The Quantum Theory of Experiments

We return to considering a system, S , and suppose that n consecutive measurements
have been carried out successfully, with the i th measurement described by spectral
projections….i/

˛ D .…
.i/
˛ /
�, ˛ D 1; : : : ; ki , of a physical quantity ai D a�i , with

….i/
˛ …

.i/

ˇ D ı˛ˇ…
.i/
˛ ;

kiX

˛D1
….i/
˛ D 1; (7.16)

for all i . (We could also use POVM’s, instead of projections, but let’s not!) The
probability of a history f….1/

˛1 ; : : : ;…
.n/
˛n g in a state ! of S given by a density matrix

�! is then given by formula (7.5), above. The measurements can be considered to
be successful only if the sum rules (7.4) are very nearly satisfied, for all i. Whether
this is true, or not, can be determined by studying the interference between different
histories. Given a state !, we defineN �N matrices, P! D .P !

˛;˛0/,N D k:::1 kn, by

P!
˛;˛0 WD !

�
….1/
˛1
: : :….n/

˛n
…
.n/

˛0

n
: : : …

.1/

˛0

1

�
D Tr

�
…
.n/

˛0

n
: : : …

.1/

˛0

1
�!…

.1/
˛1
: : : ….n/

˛n

�
;

(7.17)

where !.a/ is the expectation of the operator a in the state !. Measurements of the
quantities a1; : : : ; an can be considered to be successful only if P! is approximately
diagonal, i.e.,

jP!
˛;˛0 j � 1

2

�
P!
˛;˛ C P!

˛0;˛0

�
; (7.18)

which is customarily called “decoherence”; see, e.g., [10, 37, 47, 49]. All this
is discussed in much detail in Sects. 7.4.3 and 7.5. In particular, we will show
that decoherence is a consequence of “entanglement generation” between the
system S and its environment E and of “information loss”, meaning that the
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original state of S _ E cannot be fully reconstructed from the results of arbitrary
measurements carried out after some time T , long after the interactions between S
and E have set in; see Sect. 7.5, and [17, 31]. In local relativistic quantum theory
with massless particles (photons), the kind of information loss alluded to here is
a general consequence of Huyghens’ principle [14] and of “Einstein causality”.
It appears already in classical field theory. In local relativistic quantum theory it
becomes manifest in the circumstance that the algebra of operators representing
physical quantities measurable by a localized observer after some time T does not
admit any pure states. See [17].

The key problem in a quantum theory of experiments (or measure-
ments/observations) is, however, to find out which physical quantities will be
measured (i.e., what potential properties of a system will become “empirical”
properties, or what families of histories of events can be expected to be observed)
in the course of time, given the choice of a system, S , coupled to an environment,
E , of a specific time evolution of S _ E , and of a fixed state, !, of S _ E . This
is sometimes referred to as the problem of eliminating the mysterious role of the
“observer” from quantum mechanics (making many worlds superfluous), and of
determining the “primitive ontology” of quantum mechanics, [2]. This problem
will be reckoned with in Sects. 7.5.3 and 7.5.4.

One customarily distinguishes between “direct (or von Neumann) measure-
ments” and (indirect, or) “non-demolition measurements” carried out on a physical
system S . It may be assumed that it is clear what is meant by a direct measurement.
A non-demolition measurement is carried out by having a sequence of “probes”
.Ek/ interact with the system S , one after another, with the purpose of measuring
a physical quantity, a D a�, of S with (for simplicity) finite point spectrum,
spec.a/ D f˛1; : : : ; ˛ng. If S is in an eigenstate, j ˛i i, of a corresponding to the
eigenvalue ˛i right before it starts to interact with the kth probe, Ek , the time-
evolution of the composed system, S _ Ek, is assumed to leave j˛i i invariant but
changes the state of Ek in a manner that depends non-trivially on ˛i , for each
i D 1; : : : ; n. This leads to entanglement between S and Ek, k D 1; 2; 3; : : :

If, for simplicity, it is assumed that the probes E1;E2;E3; : : : are all independent
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of one another and that Ek interacts with S strictly after Ek�1 and strictly before
EkC1, then the state of S decohers exponentially rapidly with respect to the basis
j˛1i; : : : ; j˛ni, as k ! 1. More precisely, if �.k/ denotes the state of S after its
interaction with Ek and before its interaction with EkC1, with

�.k/˛i ;˛j WD h˛i j�.k/j˛j i; (7.19)

then

�.k/˛i ;˛j �! ı˛i˛j �˛i ;˛i ; (7.20)

exponentially rapidly. This is easily verified; (see Sect. 7.5.6). A more subtle result
on decoherence involving correlated probes that lead to memory effects has been
established in [21].

One might ask what happens if a direct measurement is carried out on every
probe Ek after it has interacted with S , k D 1; 2; 3; : : :. (We assume, for simplicity,
that all probes Ek are identical, independent and identically prepared, and that they
are all subject to the same direct measurement.) Then one can show that, under
natural non-degeneracy conditions, the state, �.k/, of S , after the passage of k probes
E1; : : : ; Ek , converges to an eigenstate of a, i.e.,

�.k/ �! j˛i ih˛i j; (7.21)

as k ! 1, for some i , and the probability of approach of �.k/ to j˛i ih˛i j is given
by �˛i ;˛i . This important result has been derived by Bauer and Bernard in [6] as a
corollary of the Martingale Convergence Theorem; (see [1, 5, 56] for earlier ideas in
this direction). The convergence claimed in Eq. (7.21) is remarkable, because it says
that, asymptotically as k ! 1, a pure state (some eigenstate of a) is approached;
i.e., a very long sequence of indirect (non-demolition) measurements carried out on
S always results in a “fact” (namely, the state of S approaches an eigenvector of
the quantity a that one intends to measure). Somewhat related results (“approach to
a groundstate”) for more realistic models have been proven in [22, 33, 35].5

In order to control the rate of convergence in Eqs. (7.20) and (7.21), it is helpful
to make use of various notions of quantum entropy; (see, e.g., [20, 62]).

Some details concerning (indirect) non-demolition measurements and some
remarks concerning interesting applications are sketched in Sect. 7.5.6; (but see
[1, 6, 34, 42, 57]).

5A result of the form of Eq. (7.21) was conjectured by J.F. in the 1990s. But the proof remained
elusive.
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7.1.3 Organization of the Paper

In Sect. 7.2, we introduce an abstract algebraic framework for the formulation of
mathematical models of physical systems that is general enough to encompass
classical and quantum mechanical models. We attempt to clarify what kind of
predictions a model of a physical system ought to enable us to come up with.
Furthermore, we summarize some important facts about operator algebras needed
in subsequent sections.

In Sect. 7.3, we describe classical models of physical systems within our
algebraic framework and explain in which sense, and why, they are “realistic” and
“deterministic”.

In Sect. 7.4, we study a general class of quantum-mechanical models of physical
systems within our general framework. We explain what some of the key problems
in a quantum theory of observations and measurements are.

The most important section of this essay is Sect. 7.5. We attempt to elucidate
the roles played by entanglement between a system and its environment and of
information loss in understanding “decoherence” and “dephasing”, which are key
mechanisms in a quantum theory of measurements and experiments; see also
[9, 37, 47, 49]. In particular, we point out that the state of the composition of a
system with its environment can usually not be reconstructed from measurements
long after interactions between the system and its environment have set in;
(“information loss”). We also discuss the problem of “time in quantum mechanics”
and sketch an answer to the question when an experiment can be considered to have
been completed successfully; (“when does a detector click?”). Put differently, the
“primitive ontology” of quantum mechanics is developed in Sects. 7.5.3 and 7.5.4.
Finally, in Sect. 7.5.6, we briefly develop the theory of indirect non-demolition
measurements, following [6].

An outline of relativistic quantum theory and of the role of space-time in
relativistic quantum theory has been sketched in lectures and will be presented
elsewhere; (see also [4]).

The main weakness of this essay (which might be fatal) is that we do not
(and cannot) discuss sufficiently many simple, convincing examples illustrating the
power of the general ideas presented here. This would simply take too much space.
But examples will be discussed in [33, 34].

7.2 Models of Physical Systems

In this section, we sketch a somewhat abstract algebraic framework suitable to
formulate mathematical models of physical systems. Our framework is general
enough to encompass classical and quantum-mechanical models.



7 Quantum Probability Theory and the Foundations of Quantum Mechanics 143

Throughout most of this essay, we consider non-relativistic models of physical
systems, so that, in principle, all “observers” have access to the same observational
data. For this reason, reference to “observers” is superfluous in the framework to be
exposed here. This is radically different in causal relativistic models.

In every model of a physical system, S , one specifies S in terms of (all) its
“potential properties”, i.e., in terms of “physical quantities” or “observables”
characteristic of S ; see, e.g., [50]. No matter whether we consider classical or
quantum-mechanical systems, “physical quantities” are represented, mathemati-
cally, by bounded, self-adjoint, linear operators. Thus, a system S is specified by
a list

PS D fai gi2IS (7.22)

of physical quantities, ai D a�i , characteristic of S that can be observed or measured
in experiments.

In classical physics, a physical quantity, a, is given by a real-valued (measurable
or continuous) function on a topological space,MS , which is the “state space” of S
(the phase space if S is Hamiltonian). Quantum-mechanically, more general linear
operators are encountered, and, as is well known, the operators in PS D fai gi2IS
need not all commute with one another. It is natural to assume that if a 2 PS is a
physical quantity of S then so is any polynomial, p.a/, in a with real coefficients.
It is, however, not very plausible that arbitrary real-linear combinations and/or
symmetrized products of distinct elements in PS would belong to PS . But, in non-
relativistic physics, it has turned out to be reasonable to view PS as a self-adjoint
subset of an operator algebra, AS , usually taken to be a C �� or a von Neumann
algebra, in terms of which a model of S can be formulated. Physicists tend to be
scared when they hear expressions like ‘C*-’ or ‘von Neumann algebra’. Well, they
shouldn’t!

7.2.1 Some Basic Notions from the Theory of Operator
Algebras

In order to render this paper comprehensible to the non-expert, we summarize some
basic definitions and notions from the theory of operator algebras; for further details
see [69, 70], and [16, 43, 44] .

An algebra, A, over the complex numbers is a complex vector space equipped
with a multiplication: If a and b belong to A, then

• �a C b 2 A; �;  2 C,
• a � b 2 A,
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where “�” denotes multiplication in A. One says that A is a �algebra iff there exists
an anti-linear involution, �, on A, i.e., � W A ! A, with .a�/� D a, for all a 2 A,
such that

.�a C b/� D �a� C b�;

where � is the complex conjugate of � 2 C, and

.a � b/� D b� � a�:

The algebra A is a normed algebra (Banach algebra) if it comes with a norm k.�/k
satisfying

•

k.�/k W A ! Œ0;1Œ

•

kak D 0; for a 2 A H) a D 0 (7.23)

• (A is complete in k.�/k, i.e., every Cauchy sequence in A converges to an element
of A).

A Banach algebra, A, is a C �-algebra iff

ka� � ak D ka � a�k D kak2; 8a 2 A: (7.24)

We define the centre, ZA, of A to be the subset of A given by

ZA WD fa 2 A j a � b D b � a;8b 2 Ag: (7.25)

A state, !, on a �algebra A with identity 1 is a linear functional ! W A ! C

with the properties that

!.a�/ D !.a/; !.a�a/ � 0; (7.26)

for all a 2 A, and

!.1/ D 1: (7.27)

A state ! is pure if it cannot be written as a convex combination of two or more
distinct states.
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A representation, � , of a C �-algebra A on a complex Hilbert space, H, is a
�homomorphism from A to the algebra, B.H/, of all bounded linear operators on
H; i.e., � is linear, �.a � b/ D �.a/ � �.b/, �.a�/ D .�.a//�, and k�.a/k 	 kak,
(where kAk is the operator norm of a bounded linear operator A on H).

A �automorphism, ˛, of a C �-algebra A is a linear isomorphism from A onto A
with the properties

˛.a � b/ D ˛.a/ � ˛.b/;
˛.a�/ D .˛.a//�;

(7.28)

for all a; b 2 A.
With a C �-algebra A and a state ! on A we can associate a Hilbert space, H! , a

unit vector� 2 H! , and a representation, �! , of A on H! such that f�!.a/� j a 2
Ag is dense in H! (i.e. � is cyclic for �!.A/), and

!.a/ D h�;�!.a/�i; (7.29)

where h�; �i is the scalar product on H! . This results from the so-called Gel’fand–
Naimark–Segal (GNS) construction.

A theorem due to Gel’fand and Naimark says that every C �-algebra, A, can
be viewed as a norm-closed subalgebra of B.H/ closed under �, for some Hilbert
space H.

Thus, consider a C �-algebra A � B.H/, for some Hilbert space H. We define
the commuting algebra, or commutant, A0, of A by

A0 WD fa 2 B.H/ j a � b D b � a;8b 2 Ag: (7.30)

The double commutant of A, A00, is defined by

A00 � .A0/0 D fa 2 B.H/ j a � b D b � a;8b 2 A0g � A: (7.31)

It turns out that A0 and A00 are closed in the so-called weak � topology of B.H/;
i.e., if fai gi2I is a sequence (net) of operators in A0 (or in A00), with

h'; ai i ! h'; a i; as i ! 1;

for all '; 2 H, where a 2 B.H/, then a 2 A0 (or a 2 A00, respectively).
�Subalgebras ofB.H/ that are closed in the weak � topology and contain the identity
are called von Neumann algebras (or W �-algebras). By a famous theorem of von
Neumann, a �algebra A of operators on a Hilbert space is a von Neumann algebra
if and only if A D A00.

Thus, if A is a C �-algebra contained in B.H/, for some Hilbert space H, then A0
and A00 are von Neumann algebras. A von Neumann algebra M 
 B.H/ is called
a factor iff its centre, ZM, consists of multiples of the identity operator 1.



146 J. Fröhlich and B. Schubnel

A von Neumann factor M is said to be of type I iff M is isomorphic to B.H0/,
for some Hilbert space H0. A general von Neumann algebra, N , is said to be of
type I iff N is a direct sum (or integral) over its centre, ZN , of factors of type I. A
C �-algebra A is called a type-I C �-algebra, iff, for every representation � , of A on
a Hilbert space H,

�.A/ WD f�.a/ j a 2 Ag

has the property that �.A/00 is a von Neumann algebra of type I. (For mathematical
properties of type-I C �-algebra see [40], and for examples relevant to quantum
physics see [15].)

We define

A0 \ B WD fb 2 B j b � a D a � b; 8a 2 Ag; (7.32)

the “relative commutant” of A in B.
Given a set P D fai gi2I of operators in a C �-algebra B, we define hPi to

be the C �-subalgebra of B generated by P , i.e., the norm-closure of arbitrary
finite complex-linear combinations of arbitrary finite products of elements in the
set fai ; a�i gi2I , where � is the � operation on B.

A trace 
 W MC ! Œ0;1� on a von Neumann Algebra M is a function defined
on the positive cone, MC, of positive elements of M (i.e., elements x 2 M of the
form x D y�y, y 2 M) that satisfies the properties

.i/ 
.x C y/ D 
.x/C 
.y/; x; y 2 MC

.ii/ 
.�x/ D �
.x/; � 2 RC; x 2 MC

.iii/ 
.x�x/ D 
.xx�/; x 2 M:

A trace 
 is said to be finite if 
.1/ < C1. It can then be uniquely extended by
linearity to a state 
 on M. Conversely, any state 
 on M enjoying the property


.a � b/ D 
.b � a/; 8a; b 2 M; (7.33)

defines a finite trace on M. We say that 
 is faithful if 
.x/ > 0 for any non-zero
element x 2 MC. A trace 
 is said to be normal if 
.supxi / D sup 
.xi / for every
bounded net .xi /i2I of positive elements in M, and semifinite, if, for any x 2 MC,
x ¤ 0, there exists y 2 MC, 0 < y 	 x, such that 
.y/ < 1. Traces play an
important role in the classification of von Neumann algebras. It can be shown that a
von Neumann algebra M is a direct sum (or direct integral) of factors of type In and
type II1 if and only if it admits a faithful finite normal trace; see [69]. Similarly, M
is a direct sum (or direct integral) of type I, type II1 and type II1 factors iff it admits
a faithful semifinite normal trace. We use these results in Sect. 7.5 to characterize
the centralizer of a state !.
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For the time being, we do not have to know more about operator algebras than
what has just been reviewed here. We can test our understanding of the notions
introduced above on the example of direct sums of full finite-dimensional matrix
algebras (block-diagonal matrices) and by doing some exercises, e.g., reproducing
a proof of the GNS construction, or applying this material to group theory.

7.2.2 The Operator Algebras Used to Describe
a Physical System

We have said that (a model of) a physical system, S , is specified by a list

PS D fai gi2IS
of physical quantities or potential properties, ai D a�i (i 2 IS ), characteristic of
S that can be observed or measured in experiments. (What is meant by this will
hopefully become clear later, in Sects. 7.4 and 7.5.) We assume that PS is a self-
adjoint subset of a C �-algebra. As explained in Sect. 7.2.1, we may then consider

AS WD hPSi; (7.34)

the smallest C �-algebra containing PS . The algebra AS is called the “algebra of
observables” defining S ; (possibly a misnomer, because, a priori, only the elements
of PS correspond to observable physical quantities—but let’s not worry about this).
For physical systems with finitely many degrees of freedom, AS is usually a type-I
C �-algebra.

We would like to have some natural notions of symmetries of a system S ,
including time evolution. Here we encounter, for the first but not the last time, the
complication that S is usually in contact with some environment, E , which may
also include experimental equipment used to measure some observables of S . The
environment is a physical system, too, and there usually are interactions between S
and E; in fact, only thanks to such interactions is it possible to retrieve information
from S , i.e., measure a potential property ai , i 2 IS , of S in a certain interval of
time. One typically chooses E to be the smallest system with the property that the
composed system, S _E , characterized by

PS_E D fa; b j a 2 PS ; b 2 PEg; (7.35)

can be viewed as a “closed physical system”.
What is a “closed physical system”? Let S WD S _ E , and let AS denote the

C �-algebra generated by PS_E ; i.e., AS D hPS_Ei. We say that S is a closed
(physical) system if the time evolution of physical quantities characteristic of S is
given in terms of �automorphisms of AS ; i.e., given two times, s and t , 
t;s is a
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�automorphism of AS that associates with every physical quantity in AS specified
at time s an operator in AS representing the same physical quantity at time t . We
must require that


t;s ı 
s;u D 
t;u; (7.36)

for any triple of times .t; s; u/.
Given a physical system, S , we choose its environment E such that, within

a prescribed precision, S D S _ E can be considered to be a closed physical
system. “For all practical purposes” (FAPP, see [9]), i.e., within usually astounding
precision, S is much . . . much smaller than the entire universe; it does usually not
include the experimentalist in the laboratory observingS or the laptop of her theorist
colleague next door, etc. To say that S is a closed physical system does, however,
not exclude that S is entangled with another physical system, S 0. Further discussion
and examples of closed systems are presented in [29].

Given S and S D S _ E , as above, we call AS the “dynamical C �-algebra”
of S .

Let GS denote a group of symmetries of S . We will assume that every element
g 2 GS can be represented by a �automorphism, �g , of AS , with the property that

�g1 ı �g2 D �g1ıg2 ; (7.37)

i.e., � W GS �! �Aut.AS/ is a representation of GS in the group, �Aut.AS /, of
�automorphisms of AS . We say that GS is a group of dynamical symmetries of S
iff �g and time evolution 
t;s commute, for all g 2 GS and arbitrary pairs of times
.t; s/.

By a “state of a physical system” S we mean a state on the C �-algebraAS , in the
sense of Eqs. (7.26) and (7.27) in Sect. 7.2.1. (This will turn out to be a misnomer
when we deal with quantum systems. But the expression appears to be here to stay.)
The set of all states of S is denoted by SS .

To summarize, a (model of a) physical system, S , is specified by the following
data.

Definition 2.1 (Algebraic Data Specifying a Model of a Physical System)

(I) A list of physical quantities, or observables, PS D fai D a�i gi2IS , generating
a C �-algebra, AS , of “observables”, that is contained in the C �-algebra
AS (the “dynamical C �-algebra” of S ) of a closed system, S D S _ E ,
containing S .

(II) The convex set, SS , of states of S , interpreted as states on the C �-algebra AS .
(III) Time translations of S , represented as �automorphisms f
t;sgt;s2R on AS

satisfying Eq. (7.36), and a group, GS , of symmetries of S represented by
�automorphisms, f�ggg2GS , of AS ; (see Eq. (7.37)).

We should explain what is meant by “time translations”: For each time t 2 R, we
have copies PS.t/ and AS .t/ D hPS.t/i �isomorphic to PS and AS , respectively,



7 Quantum Probability Theory and the Foundations of Quantum Mechanics 149

which are contained in AS . If a.s/ 2 PS.s/ and a.t/ 2 PS .t/ are the operators
in AS representing an arbitrary potential property, or observable, a 2 PS , of S at
times s and t , respectively, then

a.t/ D 
t;s.a.s//; (7.38)

with 
t;s D 
t;u ı 
u;s , for arbitrary times t; u and s in R.
We say that the system S D S _E is autonomous iff


t;s D 
t�s (7.39)

where f
t gt2R is a one-parameter group of �automorphisms of AS .
We say that a system S is a subsystem of a system S 0 iff

PS � PS 0 (7.40)

and

AS 
 AS 0 : (7.41)

The composition, S1_S2, of two systems, S1 and S2, can be defined by choosing

PS1_S2 WD PS1 [ PS2 (7.42)

and AS1_S2 to contain the C �-algebra generated by AS1
and AS2

. (A more precise
discussion would lead us into the theory of tensor categories.)

7.2.3 Potential Properties, Information Loss and Possible
Events

Let S be a physical system coupled to an environmentE and described, mathemat-
ically, by data

.PS ;ASDS_E; f
t;sgt;s2R;GS ;SS / (7.43)

with properties as specified in points (I) through (III) of Definition 2.1, Sect. 7.2.2.
A “potential property” of S is represented by an element a 2 PS or, more

generally, by a self-adjoint operator a D a� in the algebra AS . An observation of a
potential property, a, of S at time t will be described in terms of the operator a.t/ D

t;t0 .a/ 2 AS , where t0 is a fiducial time at which the state of S is specified. Next,
we have to clarify in which sense information is lost, as time increases. In local,
relativistic quantum theory, a distinction between S and S becomes superfluous, and
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one may usually identify S with S . Moreover, the finiteness of the speed of light,
i.e., of the speed of propagation of arbitrary signals, and locality lead to an intrinsic
notion of information loss [17, 31]—at least in theories with massless particles that
satisfy Huyghens’ Principle [14] and are allowed to escape to spatial 1 (or fall into
black holes). This is not so when one considers non-relativistic models of physical
systems, with signals propagating arbitrarily fast (“Fernwirkung”). Nevertheless,
one may argue that whenever properties of S are observed successfully, thanks
to interactions of S with some environment/equipment E , then, as the price to
pay, information is lost irretrievably: It disperses into the environment E , where it
becomes inaccessible to experimental observation. Of course, this idea is plausible
only if the cut between “system S” and “environment E”, given a closed system
S , is made at the right place. To determine this cut, one must specify the list PS of
physical quantities characterising S that are measurable in experiments, using E .
Mathematically, the cut is determined by specifying the pair .AS ;AS / of algebras.

For the purpose of this essay, we adopt the point of view that the only
properties of S that can potentially be observed, experimentally, are properties of
S represented by self-adjoint operators

a.t/ D a�.t/; with a 2 PS ; t 2 R: (7.44)

In order to arrive at a mathematically precise concept of information loss (as time
goes by), it is convenient to introduce the following algebras.

Definition 2.2 The algebra, E�t , of potential properties observable after time t
is the C �-subalgebra of AS generated by arbitrary finite linear combinations of
arbitrary finite products

a1.t1/ : : : an.tn/; n D 1; 2; 3; : : : ;

where ti � t and ai 2 AS , i D 1; : : : ; n, (with a.s/ the operator in AS representing
the operator a 2 AS at time s).

It follows from this definition that

E�t 
 E�t 0 (7.45)

whenever t > t 0, with E�t 
 AS , for all t 2 R. We speak of loss of information iff

E�t ¨ E�t 0 ; (7.46)

for some times t and t 0, with t > t 0. We define an algebra ES by

ES WD
_

t2R
E�t
k�k

(7.47)
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It is one of the notorious problems in most approaches to a “quantum theory of
experiments” that it is left unclear which self-adjoint operators in some very large
algebra of operators correspond to potential properties of a quantum system that can
actually bemeasured or observed. Most authors consider far too many operators as
corresponding to potential properties of the system that are potentially measurable.
As we will discuss in Sect. 7.5, it appears to be a general principle (“Duality between
Observables and Indeterminates”) that ES ¨ AS and that the relative commutant
of ES inside AS contains a subalgebra isomorphic to ES . (Obviously, for classical
systems—AS abelian, the commutant of ES is all of AS .)

Let ! 2 SS be a state of the system. Let .H!; �!;�/ denote the Hilbert space,
the representation of AS onH! , and the cyclic vector in H! , respectively, associated
to the pair .AS ; !/ by the GNS construction; see Sect. 7.2.1, Eq. (7.29). By A!

S
we

denote the von Neumann algebra corresponding to the weak closure of �!.AS / in
the algebra, B.H!/, of all bounded operators on H! .

Definition 2.3 Given a physical system S , as in Definition 2.1, (I)–(III), above, and
a state ! 2 SS , a possible event in S observable at time t is a spectral projection,

Pa.t/.I /; (7.48)

of the operator �!.a.t// 2 A!

S
associated with a measurable subset I 


spec �!.a.t// 
 R, where a D a� 2 PS and t 2 R. (Here spec A denotes the
spectrum of a self-adjoint operator A on H! .)

Definition 2.4 The algebra, E!�t , of all possible events observable at times � t , is
the von Neumann algebra corresponding to the weak closure of �!.E�t / in B.H!/.
The von Neumann algebra E!S is defined similarly.

Note that if !0 is a state that is normal with respect to the state ! then A!0

S
D A!

S
,

etc. The algebra E!�t contains the spectral projections Pa.s/.I / describing possible
events at times s � t ; (see Eq. (7.48)). It is therefore justified to call E!�t the “algebra
of possible events observable at times � t”. Loss of information may manifest itself
in the property that the relative commutant

.E!�t /0 \ E!�t 0 (7.49)

is non-trivial, for some t > t 0.
We note that the algebra ES carries an action of the group, R, of time translations

by �automorphisms, f
 tgt2R, defined as follows: For a1.t1/ : : : an.tn/ 2 _
t2RE�t , with

ti 2 R; ai 2 AS ; i D 1; : : : ; n,


 t .a1.t1/ : : : an.tn// WD a1.t1 C t/ : : : an.tn C t/: (7.50)



152 J. Fröhlich and B. Schubnel

The definition of 
 t extends to all of ES by linearity and continuity. One then has
that


 t W E�t 0 �! E�t 0Ct 
 E�t 0 ; (7.51)

for arbitrary t � 0.
Let a 2 PS be a potential property of S , and let ! be a state of S (i.e., ! 2 SS ).

Depending on the experimental equipment available to observe a, i.e., depending
on the choice of the time evolution of S D S _ E , and depending on the choice
of a state ! 2 SS , an observation of a may have different alternative outcomes;
in particular, the resolution in an observation of a at some time t� will depend on
the choice of .E; f
t;sgt;s2R; !/. These alternative outcomes correspond to spectral
projectionsPa.t�/.I˛/, ˛ D 1; : : : ; k, where I˛ \Iˇ D ;, for ˛ ¤ ˇ, and [k

˛D1I˛ �
spec �!.a.t�//. Then

Pa.t�/.I˛/Pa.t�/.Iˇ/ D ı˛ˇPa.t�/.I˛/; (7.52)

and

kX

˛D1
Pa.t�/.I˛/ D 1; (7.53)

for an arbitrary t�.
Traditionally, one says that the purpose of a model of a physical system, S , is to

enable us to make predictions of the following kind: Suppose we are interested
in testing some potential properties (or, put differently, measure some physical
quantities) a1; : : : ; an characteristic of S during intervals of time �1 � �2 � : : : �
�n, where

� � �0 iff, 8t 2 �; 8t 0 2 �0 W t 	 t 0: (7.54)

We assume that S is in a state ! 2 SS . Then a model of S ought to tell us
whether a1; : : : ; an will actually be measurable (i.e., are “empirical” properties)
and predict the probability (frequency) that, in a test or measurement of ai at
some time ti 2 �i , the event corresponding to the spectral projection Pai .ti /.I

i
˛i
/,

˛i D 1; : : : ; ki , is observed, (i.e., property ai .ti / has a value in the interval I i˛i ),
for all i D 1; : : : ; n; given the state ! 2 SS ; (the properties of the projections
Pai .ti /.I

i
˛i
/ are as in Eqs. (7.52), (7.53)).

We simplify our notation by setting

….i/
˛i

� ….i/
˛i
.ti / WD Pai .ti /.I

i
˛i
/; (7.55)
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with ti 2 �i ; ai 2 PS ; i D 1; : : : ; n, �1 � �2 � : : : � �n. The time-ordered
sequence

hn1.˛/ WD f….1/
˛1
; : : : ;….n/

˛n
g (7.56)

of possible events….i/
˛i (as in Eq. (7.55)) is conventionally called a “history”. Given

such a history, we define operators

Hn
k .˛/ WD ….n/

˛n
: : :….kC1/

˛kC1
….k/
˛k
; (7.57)

with ….i/
˛i as in Eq. (7.55).

Postulate 2.5 (see [59, 64, 76]) Given a model of a physical system S , as specified
in points (I)–(III) of Definition 2.1, Sect. 7.2.2, the probability of a history hn1.˛/ D
f….1/

˛1 ; : : : ;…
.n/
˛n g in a state ! 2 SS is predicted to be given by

Prob! h
n
1.˛/ � Prob!f….1/

˛1
; : : : ;….n/

˛n
g WD !

�
.Hn

1 .˛//
�Hn

1 .˛/
	
; (7.58)

with Hn
1 .˛/ as in Eq. (7.57). (It is assumed here that a1; : : : ; an are measurable, for

the given time-evolution and state of the system; see Sect. 7.5.)
Much discussion in the remainder of this essay is devoted to finding out

under what conditions formula (7.58), is meaningful, and—if it is—what it tells
us about S . To give away our secrets, Postulate 2.5 is perfectly meaningful for
classical models of physical systems, as discussed in Sect. 7.3, and it is most often
meaningless for quantum-mechanical models. While FMPP (“for many practical
purposes”), formula (7.58) is useful in quantum mechanics, conceptually it is
misleading and often nonsensical! It does, however, pass some tests indicating that
it defines a probability:

(1) Prob! satisfies

0 	 Prob!f….1/
˛1
; : : : ;….n/

˛n
g 	 1; (7.59)

for every state ! 2 SS and an arbitrary history f….1/
˛1 ; : : : ;…

.n/
˛n g.

(2)

X

˛iD1;:::;ki .iD1;:::;n/
Prob!f….1/

˛1
; : : : ;….n/

˛n
g D 1; (7.60)

for arbitrary operators a1; : : : ; an and time intervals�1 � : : : � �n, (with….i/
˛i

as in Eq. (7.55)).
Properties (1) and (2) show that Prob! is a probability functional.

(3) As observed in [48, 59] and references given there, formula (7.58) represents the
“only possible” definition of a probability functional on the lattice of possible
events.
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As already mentioned, formula (7.58) is perfectly adequate for an analysis of
the predictions of classical models of physical systems. Quantum-mechanically,
however, given

.AS ; f
t;sgt;s2R; ! 2 SS /;

one encounters plenty of sequences of potential properties,

fa1.t1/; : : : ; an.tn/g;

with ai 2 PS , ti 2 �i , i D 1; : : : ; n, �1 � : : : � �n, which turn out
to be incompatible with one another. The question then arises which one among
such sequences of potential properties of S actually corresponds to a sequence of
empirical properties of S observed in the course of time; (assuming that there is
only one rather than “many worlds”). Formula (7.58) does not tell us much about
the answer to this question; but the idea of loss of information, as expressed in
Eqs. (7.46) and (7.49), along with the phenomenon of entanglement, does! This is
discussed in Sects. 7.5.3 and 7.5.4.

7.3 Classical (“Realistic”) Models of Physical Systems

We start this section by recalling the usual distinction between classical, realistic
models (abbreviated as “R-models”) and quantum-mechanical-models (abbreviated
as “Q-models”) of physical systems: An R-model of a system S is fully character-
ized by the property that its “dynamical C �-algebra” AS (see Sect. 7.2.2) is abelian
(commutative). Hence AS is abelian, too.

A Q-model of a system S differs from an R-model only in that the algebra AS

(and hence AS ) is non commutative. Apart from this crucial difference, the algebraic
data defining an R- or a Q-model are as specified in points (I)–(III) of Definition 2.1,
Sect. 7.2.2.

7.3.1 General Features of Classical Models

We recall a well-known theorem due to I.M. Gel’fand. Let B be an abelian C �-
algebra. The spectrum,M , of B is the space of all non-zero �homomorphisms from
B into C (the “characters” of B); M is a locally compact topological (Hausdorff)
space. If B contains an identity, 1, then M is compact.
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Theorem 3.1 (Gel’fand) If B is an abelian C �-algebra then it is �isomorphic to
the C �-algebra, C0.M/, of continuous functions on M vanishing at 1, i.e.,

B ' C0.M/: (7.61)

Furthermore, every state, !, on B is given by a unique (Borel) probability measure,
d! , on M (and conversely).

Every pure state is given by a Dirac ı-function, ıx , on M , for some x 2 M ; i.e.,
the space of pure states can be identified with M , (which is why M is called “state
space”). Thus, the set of pure states of B cannot be endowed with a linear or affine
structure.

If B0 � B is a subalgebra of B then any pure state of B is also a pure state of B0.
If B D AS is the dynamical C �-algebra of a realistic (classical) model of a physical
system, S , we call M DW MS the state space of S . It is homeomorphic to the space
of pure states of S and does not have a linear structure, i.e. there is no superposition
principle for pure states. If S D S1 _ S2 is the composition of two subsystems,
S1 and S2, these systems are, of course, classical, too, and we have that any pure
state of S is also a pure state of S1 and of S2; i.e., there is no interesting notion of
entanglement.

7.3.2 Symmetries and Time Evolution in Classical Models

According to point (III) of Definition 2.1 in Sect. 7.2.2, symmetries and time
evolution of a system S are given by *automorphisms of its dynamical C �-
algebra AS . If B is an abelian C �-algebra and M denotes its spectrum then any
�automorphism, ˛, of B corresponds to a homeomorphism, �˛, of M : If a is an
arbitrary element of B, thus given by a bounded continuous function (also denoted
by a) on M , then

˛.a/.�/ DW a.��1˛ .�//; � 2 M: (7.62)

Conversely, any homeomorphism, �, from M to M determines a �automorphism,
˛� , by

˛�.a/.�/ WD a.��1.�//; � 2 M: (7.63)

If f˛t;sgt;s2R is a groupoid of �automorphisms of B, with ˛t;s ı˛s;u D ˛t;u, then there
exists a groupoid of homeomorphisms, f�t;sgt;s2R, ofM , with �t;s ı�s;u D �t;u, such
that

˛t;s.a/.�/ D a.�s;t .�//; � 2 M; (7.64)

where �s;t D ��1t;s .
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Let us suppose that there is a subalgebra VB � B that is norm-dense in B such that

˛t;s.a/ is continuously differentiable in t (and in s), for arbitrary a 2 VB. We define

ıs.a/ D d

dt
˛t;s.a/jtDs; a 2 VB: (7.65)

Then ıs is a �derivation defined on VB. An operator ı W Domı ! B is a �derivation
of B iff Domı 
 B is norm-dense in B, ı is linear, ı.a�/ D .ı.a//�, and

ı.a � b/ D ı.a/ � b C a � ı.b/ .Leibniz rule/; (7.66)

for arbitrary a; b 2 Domı . If B is abelian then a �derivation ı of B corresponds to a
vector field X onM , (assuming that M admits some vector fields):

ı.a/.�/ D .Xa/.�/; (7.67)

where a corresponds to an arbitrary continuously differentiable function on M . If

ıs satisfies Eq. (7.65) then, for a 2 VB 
 Domıs ,

d

dt
˛t;s.a/jtDs D ıs.a/ D Xsa; (7.68)

where, for each s 2 R,Xs is a vector field onM . Equation (7.68) can be rewritten as

d

dt
�t;s.�/ D �Xt.�t;s.�//; � 2 M: (7.69)

Hence, at least formally, the homeomorphisms�t;s can be constructed from a family
of vector fields fXsgs2R by integrating the ordinary differential equations (7.69).
These observations can be made precise if the spectrum M of B admits a tangent
bundle, TM , and the vector fieldsXs are globally Lipschitz and continuous in s, for
all s 2 R. If Xs � X is independent of s then �t;s D �t�s is a one-parameter group
of homeomorphisms ofM , (and conversely).

All these remarks can be applied to a classical (model of a) physical system, S ,
with an abelian dynamical C �-algebra AS . One may then interpret the parameters
t; s 2 R of a groupoid f
t;sgt;s2R of � automorphisms of AS as times; and we
say that S is autonomous iff 
t;s D 
t�s belongs to a one-parameter group of
�automorphisms of AS , or if the vector field X on MS D specAS generating 
t
is time-independent. It is straightforward to describe general symmetries of S in
terms of groups of homeomorphisms of MS .
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7.3.3 Probabilities of Histories, Realism and Determinism

A physical quantity or property of a classical physical system S is given by a
continuous function, a, onMS . We denote the family of all properties of S specified
at a fiducial time t0 by PS D fai gi2IS . A possible event in S at a time t corresponds
to the characteristic function, ��Ii .t/, of an open subset, �I

i .t/, of MS given by

� 2 �I
i .t/ , ai .t/.�/ 2 I; (7.70)

where ai 2 PS , ai .t/ D 
t;t0 .ai /, and I is an open subset of R; (see Definition 2.3
in Sect. 7.2.3).

Let �t;s denote the homeomorphism of MS corresponding to 
t;s . Setting �I
i WD

�t0;t .�
I
i .t//, we have that

� 2 �I
i .t/ , ai .t/.�/ 2 I , 
t;t0 .ai /.�/ 2 I

, ai .�t0;t .�// 2 I , � WD �t0;t .�/ 2 �I
i :

We choose n properties, a1; : : : ; an; of S to be measured at times t1 	 t2 	 : : : 	 tn,
with the measured value of ai contained in the interval Ii , i D 1; : : : ; n. We let
�i.ti / be the open subset of MS given by

� 2 �i.ti / , ai .ti /.�/ 2 Ii ; (7.71)

i D 1; : : : ; n, and �i D �t0;ti .�i .ti //.
Let  be a state of S , i.e., a probability measure on MS . Every theoretical

prediction concerning S is the prediction of the probability of a history, f�ti WD
�t0;ti .�/ 2 �igniD1:

Probf��1.t1/; : : : ; ��n.tn/g WD
Z

MS

d.�/

nY

iD1
��i .ti /.�/

D
Z

MS

d.�/

nY

iD1
��i .�t0;ti .�//:

(7.72)

If  is a pure state, i.e.,  D ı�0 , for some �0 2 MS then

Probı�0 f��1.t1/; : : : ; ��n.tn/g D
nY

iD1
��i .ti /.�0/ D

nY

iD1
��i .�t0;ti .�0//; (7.73)

i.e., the possible values of Probı�0 are 0 and 1, for any �0 2 MS and all histories. If
�t WD �t0;t .�0/ is the trajectory of states with initial condition �0 at time t0 then

Probı�0 f��1.t1/; : : : ; ��n.tn/g D 1 ” �ti 2 �i ; (7.74)
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for all i D 1; : : : ; n; otherwise, Probı�0 vanishes. If �0 … �i then the event
f�t0;t .�/ 2 �i g is first observed at time t D t i , where

t i WD inf ft j �0;t D �t0;t .�0/ 2 �i g; (7.75)

and it is last seen at time t i , where

t i WD sup ft j �0;t D �t0;t .�0/ 2 �i g: (7.76)

These features of classical physical systems, in particular the “0-1 laws” in
Eq. (7.74), are characteristic of realism and determinism: Given that we know the
state, �0, of a system S at some time t0, we know its state, �t D �t0;t .�0/, and the
value, ai .�t /, of an arbitrary property, ai 2 PS , of S , at an arbitrary (earlier or
later) time t .

Remark 3.2 (i) A straightforward extension of Eq. (7.72) is the basis for a defini-
tion of the dynamical (Kolmogorov–Sinai) entropy of the state ; see [52, 65].

(ii) A special class of classical systems are Hamiltonian systems, S , for which
MS is a symplectic manifold, and the homeomorphisms �t;s are symplecto-
morphisms.

7.4 Physical Systems in Quantum Mechanics

As indicated in the last section, the only feature distinguishing a quantum-
mechanical model of a physical system S (a Q-model) from a classical model
(an R-model) is that, in a Q-model, AS and hence AS are non-commutative
algebras. This has profound consequences! In this section, we recall some of the
better known ones among them; in particular those that concern problems with the
Schwinger–Wigner formula; see Postulate 2.5, Eq. (7.58).

7.4.1 Complementary Possible Events Do Not Necessarily
Exclude One Another

Let us recall the main task we are confronted with: We have to clarify what the
mathematical data (see Definition 2.1, Sect. 7.2.2)

.PS ;AS ; f
t;sgt;s2R; ! 2 SS / (7.77)
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tell us about the “behaviour” of the system S , as time goes by; in particular about the
empirical properties displayed by S and the events happening in S . This task will be
shouldered for quantum-mechanical models in Sect. 7.5; it has been dealt with for
classical models in the last section, (see also [32]). To set the stage for the analysis
of Sect. 7.5, it is useful to return to formulae (7.52), (7.53), (7.57) and, in particular,
formula (7.58) for the probability of histories; see Sect. 7.2.3. Thus, we consider n
possible events associated with physical quantities/potential properties, ai 2 PS , of
S measured at times ti 2 �i � R, i D 1; : : : ; n, with �1 � �2 � : : : � �n. Given
a state ! on AS , possible events are represented by spectral projections,….i/

˛i 2 A!

S
,

of the operators ai .ti / 2 AS . The projections….i/
˛i are given by

….i/
˛i

� ….i/
˛i
.ti / WD Pai .ti /.I

i
˛i
/; (7.78)

˛i D 1; : : : ; ki , i D 1; : : : ; n, where I i˛i are disjoint measurable subsets of R with

[ki
˛iD1I

i
˛i

� spec �!.ai .ti //. It follows that

kiX

˛iD1
….i/
˛i

D 1; (7.79)

for all i . As in Eq. (7.57), we set

Hn
k .˛/ WD ….n/

˛n
: : : ….k/

˛k
; 1 	 k 	 n: (7.80)

A stretch, hkl .˛/, of a history hn1.˛/ is defined by

hkl .˛/ WD f….l/
˛l
; : : : ;….k/

˛k
g; 1 	 l 	 k 	 n; (7.81)

with hn WD hn1.˛/. Furthermore, we set

hnLk WD f….1/
˛1
; : : : ;….k�1/

˛k�1
;….kC1/

˛kC1
; : : : ;….n/

˛n
g: (7.82)

In the Schwinger–Wigner formula (7.58), the probability of a history, hn, of S , given
a state !, has been defined by

Prob!f….1/
˛1
; : : : ;….n/

˛n
g WD !

�
.Hn

1 .˛//
�Hn

1 .˛/
	 D !.….1/

˛1
….2/
˛2
: : :….n/

˛n
: : :….2/

˛2
….1/
˛1
/;

(7.83)

with properties (1)–(3), (see Eqs. (7.59) and (7.60)).
Here we wish to point out some fundamental problems with formula (7.83)

in quantum mechanics. Suppose that the complementary possible events
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…
.i/
1 ; : : : ;…

.i/

ki
were mutually exclusive, given that….1/

˛1 ; : : : ;…
.i�1/
˛i�1 …

.iC1/
˛iC1

; : : : ;…
.n/
˛n

are observed, for some i < n, then we would imagine that the “sum rule”

kiX

˛iD1
Prob! hn1.˛/ D

kiX

˛iD1
Prob!f….1/

˛1
; : : : ;….i/

˛i
; : : : ;….n/

˛n
g

D Prob!f….1/
˛1
; : : : ;….i�1/

˛i�1
;….iC1/

˛iC1
; : : : ;….n/

˛n
g

D Prob! hnLi .˛/

(7.84)

holds; see Eq. (7.82). If ….i/
˛i commuted with the operator Hn

iC1.˛/, for all ˛i—as
is the case in every classical model—then Eq. (7.84) would hold true. However,
because of the non-commutative nature of AS ,

Œ….i/
˛i
;Hn

iC1.˛/� ¤ 0; (7.85)

in general. This leads to non-vanishing interference terms,

!
�
.H i�1

1 .˛//�….i/
˛i
.Hn

iC1.˛//�Hn
iC1.˛/…

.i/

ˇi
H i�1
1 .˛/

�
; (7.86)

with ˛i ¤ ˇi . In the presence of non-vanishing interference terms the sum
rule (7.84) is usually violated. This means that the complementary possible events
…
.i/
1 ; : : : ;…

.i/

ki
, do, apparently, not mutually exclude one another, given future

events ….iC1/
˛iC1

; : : : ;…
.n/
˛n that cause interference. Put differently, a history hn does,

in general, not result in the determination of a potential property ai , of S in the
i th observation (or measurement), given the data in (7.77) (the time evolution
f
t;sgt;s2R, and a state !). If the sum rule (7.84) is violated, then the operator
ai .ti / does not represent an empirical property of S , given later observations of
physical quantities aiC1; : : : ; an. Apparently, the operators a 2 PS do, in general,
not represent properties of S that exist a priori, but only potential properties of S
whose empirical status depends on the choice of the time evolution f
t;sg
;s2R of
S D S _E and of the state !. This will be made precise in Sect. 7.5.

7.4.2 The Problem with Conditional Probabilities

In Sect. 7.2.3, (7.59) and (7.60), we have seen that

!.˛/ WD Prob!f….1/
˛1
; : : : ;….n/

˛n
g (7.87)
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is a probability measure on Zk1 � : : : � Zkn . Let us fix ˛1; : : : ; ˛i�1; ˛iC1; : : : ; ˛n,
and ask what the conditional probability

Prob! f….i/
˛i

j hnLi .˛/g (7.88)

of the possible event….i/
˛i is, given ! and hnLi ; (see Eq. (7.82)). Since (7.87) defines

a probability measure, we may define

Prob! f….i/
˛i

j hnLi .˛/g WD !.˛1; : : : ; ˛i ; : : : ; ˛n/
Pki

ˇiD1 !.˛1; : : : ; ˇi ; : : : ; ˛n/
: (7.89)

Unfortunately, there is a problem with this definition! Recall that….i/

ˇi
is a shorthand

for the spectral projection Pai .ti /.I
i
ˇi
/. We fix a subset I i˛i , but introduce a new

decomposition of spec ai into subsets

QI i1 WD I i˛i ; R n I i˛i D [mi
ˇD2 QI iˇ;

with QI iˇ \ QI i	 D ;, for ˇ ¤ 	 , and define

Q….i/

ˇi
WD Pai .ti /.

QI iˇi /;

ˇi D 1; : : : ; mi . We define

Q!.˛1; : : : ; ˇi ; : : : ; ˛n/ WD Prob!f….1/
˛1
; : : : ; Q….i/

ˇi
; : : : ;….n/

˛n
g:

Then

Q!.˛1; : : : ; 1; : : : ; ˛n/ D !.˛1; : : : ; ˛i ; : : : ; ˛n/I

but, most often, the putative “conditional probabilities” are different,

Prob Q! f….i/
˛i

j hnLi .˛/g ¤ Prob! f….i/
˛i

j hnLi .˛/g; (7.90)

unless all possible interference terms vanish. Thus, in general, there is no meaning-
ful notion of “conditional probability” in quantum mechanics.

It may be of interest to note that if the operators ai have pure-point spectrum with
only two distinct eigenvalues then

f….i/
˛i

g˛iD1;2 D f Q….i/

ˇi
gˇiD1;2;

and we have equality in Eq. (7.90). These findings may be viewed as a general
version of the Kochen–Specker theorem, [51].
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Let us recall a “test” for one of the possible events f….i/
˛i gki˛iD1 to materialize in

a measurement at time ti of the potential property of S represented by the operator
ai 2 PS ; (see [32] and references given there). For this purpose, we introduce the
matrix

P!
˛;˛0 WD !.….1/

˛1
: : : ….n/

˛n
…
.n/

˛0

n
: : : …

.1/

˛0

1
/; (7.91)

with ˛n D ˛0n; see (7.17). Classically, P! D .P !
˛;˛0/ is always a diagonal matrix,

because all the operators….i/
˛i commute with one another and by Eq. (7.52). We say

that a family of histories fhn1.˛g is consistent iff the commutators

Œ….i/
˛i
;Hn

iC1.˛/�

vanish, for all ˛i ; ˛ and i D 1; : : : ; n; (see [41]). If fhn1.˛/g is consistent then P!
˛;˛0

is diagonal, and the sum rules (7.84) are valid for all ˛ and all i D 1; : : : ; n. We say
that a family fhn1.˛/g of histories is ı-consistent(0 	 ı 	 1) iff

kŒ….i/
˛i
;Hn

iC1.˛/�k 	 1 � ı; (7.92)

for all i.
A 1-consistent history is consistent. We define a diagonal matrix�! by

�˛;˛0 WD
(
P!
˛;˛ if ˛ D ˛0

0 else

Clearly inequality (7.92) implies that

kP! ��!k 	 const..1 � ı/: (7.93)

This shows that, for a ı-consistent family of histories, with ı  1, the sum
rules (7.84) are very nearly satisfied, meaning that the events ….i/

1 ; : : : ;…
.i/

ki
mutually exclude one another FAPP (“for all practical purposes”, [9]). In [32], we
have called

e! WD 1 � kP! ��!k

the “evidence” for ….i/
1 ; : : : ;…

.i/

ki
to mutually exclude one another, FAPP, i D

1; : : : ; n. Apparently, if e! is very close to 1, then everything might appear to be
fine. Well, the appearance is deceptive, as we will explain below!

Dynamical mechanisms that imply that kP! � �!k becomes small, i.e., e!

approaches 1, in suitable limiting regimes are known under the names of “dephas-
ing” and “decoherence”; see [37, 47, 49, 75]. Understanding decoherence is clearly
an important task. Here we summarize a few observations on those mechanisms; but
see Sects. 7.5.3 and 7.5.4. (Some instructive examples will be discussed elsewhere.)
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7.4.3 Dephasing/Decoherence

In our discussion of near (i.e., ı-) consistency of families of histories, hn, operators
Qn
k.˛/, defined by

Qn
k.˛/ WD .Hn

k .˛//
�Hn

k .˛/ D ….k/
˛k
.tk/ : : :…

.n/
˛n
.tn/ : : :…

.k/
˛k
.tk/; (7.94)

tk < tkC1 < : : : < tn, 1 	 k 	 n, play an important role. Inequality (7.92) implies
that

kŒ….i/
˛i
;Qn

iC1.˛/�k 	 2.1� ı/ � 1 (7.95)

if ı is very close to 1. Condition (7.95) is slightly weaker than (7.92), so we will
work with (7.95). If (7.95) holds, for all i and all ˛, the sum rules (7.84) are
satisfied, up to tiny errors, and the matrix P! is very nearly diagonal; so there is
“decoherence”. A (very stringent) sufficient condition for

Œ….i/
˛i
;Qn

iC1.˛/� D 0 (7.96)

to hold, for all i and all ˛, i.e., for perfect decoherence to hold, is the following one:
We observe that

Qn
k.˛/ 2 E!�tk ; for all ˛; (7.97)

where the von Neumann algebras E!�t of possible events observable at times � t

have been introduced in Definition 2.4, Sect. 7.2.3. If there is loss of information, in
the sense of condition (7.49), more precisely if the relative commutants

.E!�tiC1
/0 \ E!�Qti ; ti�1 < Qti 	 ti ; (7.98)

are non-trivial, for suitable choices of sequences of times t1 < t2 < : : : < tn,
Qt1 < Qt2 < : : : < Qtn, and if the operator

ai .ti / 2 .E!�tiC1
/0 \ E!�Qti ; (7.99)

and hence….i/
˛i belongs to .E!�tiC1

/0\E!�Qti , for all ˛i D 1; : : : ; ki , with ti�1 < Qti 	 ti ,
then

Œ….i/
˛i
;Qn

iC1.˛/� D 0; (7.100)

for all ˛i and all ˛. If (7.99) and hence Eq. (7.100) hold, for all i 	 n, then there is
perfect decoherence, and the histories fhn1.˛/g form a consistent family.
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The scenario for decoherence described here is encountered in relativistic
quantum field theories with a massless particle (e.g., the photon), as can be inferred
from results in [14, 17]. In non-relativistic quantum mechanics, the above scenario
for decoherence remains plausible, provided one allows for small changes of
the operators ai .ti / into operators Qai .ti / that belong to .E!�tiC1

/0 \ E!�Qti . In this
connection the following result may be of interest.

Theorem 4.1 Let ….1/
˛1 ; : : : ;…

.n/
˛n be orthogonal projections, and let the operators

Qn
k.˛/ be defined as in Eq. (7.94). Suppose that

kŒ….i/
˛i
;Qn

iC1.˛/�k < �; (7.101)

for all i D 1; : : : ; n � 1 and all ˛ D .˛1; : : : ; ˛n/, with � sufficiently small
(depending on the total number,

Pn
iD1 ki , of n-tuples ˛, with ˛i D 1; : : : ; ki ). Then

there exist orthogonal projections Q….i/
˛i , ˛i D 1; : : : ; ki , i D 1; : : : ; n, with

Q….i/
˛i

Q….i/

ˇi
D ı˛i ˇi

Q….i/
˛i
;

kiX

˛iD1
Q….i/
˛i

D 1; (7.102)

such that

k Q….i/
˛i

�….i/
˛i

k 	 C�; (7.103)

and

Œ Q….i/
˛i
; QQn

iC1.˛/� D 0; (7.104)

for all ˛ and all i 	 n� 1. The constant C in Eq. (7.103) depends on
Pn

iD1 ki , and

� must be chosen so small that C� < 1; (in which case Q….i/
˛i and ….i/

˛i are unitarily
equivalent).

Remark 4.2 The operators ; QQn
k.˛/ are defined as in Eq. (7.94), with ….i/

˛i .ti / �
…
.i/
˛i replaced by Q….i/

˛i , for all i .

The proof of Theorem 4.1 can be inferred from Sect. 4.5 of [32], (Lemmata 7
and 8).
Interpretation of Theorem 4.1. Apparently, dephasing/decoherence in the form of
inequalities (7.101) implies that if one reinterprets the measurements made at times
t1 < t2 < : : : < tn as observations of events Q….1/

˛1 ; : : : ;
Q….n/
˛n that differ slightly from

the spectral projections ….1/
˛1 ; : : : ;…

.n/
˛n of potential properties a1; : : : ; an of S then

all interference terms (see (7.86), (7.91)) vanish, the matrix P! is diagonal, and the
sum rules (7.84) hold. The family of histories f Q….1/

˛1 ; : : : ;
Q….n/
˛n g is consistent, and the

complementary possible events Q….i/
1 ; : : : ;

Q….i/

ki
mutually exclude one another.
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Critique of the Concept of “Families of Consistent Histories”

(i) Given a measurement of a potential property ai 2 PS of S at some time
ti , the success of this measurement, as expressed in the decoherence of
(absence of interference between) the events ….i/

1 ; : : : ;…
.i/

ki
, apparently not

only depends on the past but seems to depend on the future, namely on
subsequent measurements of potential properties aiC1; : : : ; an at times > ti .
This is how conditions such as (7.92), (7.95) and (7.101) must be interpreted.
The consistency of a family fhi1.˛/g of stretches of histories (see Eq. (7.81)
for the definition) can apparently only be assured if one also knows the family
fhniC1.˛/g of stretches of histories in the future of fhi1.˛/g. This may be a deep
aspect of quantum mechanics; but it is more likely an indication that there is
something wrong with the concept of “consistent (families of) histories” and
with a formulation of decoherence in the form of inequalities (7.101).

(ii) Accepting, temporarily, the idea of “consistent (families of) histories”—e.g., in
the appealing form of conditions (7.99)—we encounter the following problem:
Fixing the data

.PS ;AS ; f
t;sgt;s2R; ! 2 SS /; (7.105)

see (7.77), we may consider two (or more) families of potential properties of S ,

fa1; : : : ; ang and fb1; : : : ; bmg; (7.106)

measured at times t1 < : : : < tn and t 01 < : : : < t 0m, respectively, with ai 2
PS and bj 2 PS , for all i and j . Both families may give rise to families of
consistent histories (e.g., if conditions (7.99) hold for the ai ’s and the bj ’s).
Yet, there may not exist any family

fc1; : : : ; cN g; N � nCm;

of potential properties of S (cj 2 PS , for all j ) measured at times T1 < : : : <
TN , with

fT1; : : : ; TN g � ft1; : : : ; tng [ ft 01; : : : ; t 0mg;

encompassing the two families in (7.106) and giving rise to a family of
consistent histories. Since the data (7.105) are fixed, the confusing question
arises which one of the two or more incompatible families of potential
properties fa1; : : : ; ang, fb1; : : : ; bmg, . . . will actually be observed in the
course of time, i.e., become real , (or, put differently, correspond to empirical
properties). Some people suggest, following Everett [28], that there is a world
for every family of potential properties of S giving rise to a family of consistent
histories to be observed. This is the “many-worlds interpretation of quantum
mechanics”, which we find entirely unacceptable!
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(iii) Unfortunately, the problem described in (ii) persists even in the decoherence
scenario described in (7.96)–(7.100), above, because the von Neumann alge-
bras

Mi WD .E!�tiC1
/0 \ E!�Qti .ti�1 < Qti 	 ti / (7.107)

are usually non-commutative. If there are an ai and a bj from the sets of
operators in (7.106) belonging to the same Ml , and if

Œai .ti /; bj .t
0
j /� ¤ 0; (7.108)

then the problem described in (ii) appears on the scene. It could be avoided
if one assumed that ai .ti / and bj .t 0j / must belong to the center, ZMl

, of Ml ,
because then the commutators on the left side in (7.108) would all vanish.
The right version of something like this idea will be formulated in Sects. 7.5.3
and 7.5.4.

(iv) It has tacitly been assumed, so far, that the times at which quantum-mechanical
measurements of potential properties of a system S are carried out (we are
talking of the times ti at which potential properties ai of S are observed) can
be fixed precisely (by an “observer”?). Obviously, this assumption is nonsense
in quantum mechanics, (as opposed to classical physics); see Sect. 7.5.4.

In an appendix, the reader may find some remarks on positive operator-valued
measures (POVM) [61] and their uses; (but see also the end of Sect. 7.5.4 and [33]).

7.4.A Appendix to Sect. 7.4: Remarks on Positive
Operator-Valued Measures (POVM)

It may and will happen sometimes that the commutators

Œ….i/
˛i
;Qn

iC1.˛/�

are not small in norm, and the matrix P! defined in Eq. (7.91) has “large” off-
diagonal elements. Then some of the operators ai representing potential properties
of S are not measurable and do apparently not represent empirical properties of S ,
given the data

.PS ;AS ; f
t;sgt;s2R; ! 2 SS /:

While this is a perfectly interesting piece of information, it raises the question
whether formula (7.83) continues to contain interesting information, although the
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sum rule (7.84) may be strongly violated. A conventional answer to this question
involves the notion of “positive operator-valued measures” (POVM): For k� < kC,
we define

HkC

k� .˛/ WD ….kC/
˛
kC

….kC�1/
˛
kC

�1
: : : ….k�C1/

˛k�
C1
….k�/
˛k�

: (7.109)

We observe that

X

˛

�
HkC

k� .˛/
��
HkC

k� .˛/ D 1; (7.110)

(and

X

˛

HkC

k� .˛/
�
HkC

k� .˛/
�� D 1:/

Consider

Prob!f….1/
˛1
; : : : ;….n/

˛n
g � Prob!fhk��1

1 .˛/; hk
C

k� .˛/; h
n
kCC1.˛/g

WD !
�
.Hk��1

1 /�.HkC

k� /
�.Hn

kCC1/
�Hn

kCC1H
kC

k� H
k��1
1

�

(7.111)

We may say that hk
C

k� .˛/ represents a single experiment on the system S if the sum
rule (7.84) is violated substantially, for all i D k�; k� C 1; : : : ; kC, but

X

˛k� ;:::;˛
kC

Prob!fhk��1
1 .˛/; hk

C

k� .˛/; h
n
kCC1.˛/g  Prob!fhk��1

1 .˛/; hn
kCC1.˛/g;

(7.112)

up to an error that is so small that it is below the experimental resolution. In view of
Eq. (7.110), our discussion can be formalized as follows.

Definition 4.3 The “square root” of a positive operator-valued measure (POVM) is
a (finite) family of operators

X D fX˛gN˛D1 (7.113)

with the property that

NX

˛D1
X �̨X˛ D 1: (7.114)

The “positive operator-valued measure” is then given by the operators
fX �̨X˛gN˛D1.
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Given a time-ordered sequence of (“square roots” of) POVM’s, X.1/; : : : ; X.n/,
the probability of observing a “generalized history”

hn1.˛/ D fX.1/
˛1
; : : : ; X.n/

˛n
g (7.115)

is given by

Prob!fX.1/
˛1
; : : : ; X.n/

˛n
g WD !

�
.X.1/

˛1
/� : : : .X.n/

˛n
/�X.n/

˛n
: : : X.1/

˛1

	
: (7.116)

The probabilities of such generalized histories have the desirable properties (7.59)
and (7.60). We say that fX.1/; : : : ; X.n/g, with X.i/ (the square root of) a POVM,
for all i , describes a time-ordered sequence of n successful experiments, or
observations, iff

X

˛i

Prob!fX.1/
˛1
; : : : ; X.i/

˛i
; : : : ; X.n/

˛n
g  Prob!fX.1/

˛1
; : : : ; X.i�1/

˛i�1
; X.iC1/

˛iC1
; : : : ; X.n/

˛n
g;

(7.117)

up to a tiny error below the experimental resolution, for all i D 1; : : : ; n and all ˛.
An example of events described by POVM’s is described in Sect. 7.5.4; (see also
[33]).

All the concepts and notions introduced in Sect. 7.4 can be carried over to this
generalized setup, after replacing ai by X.i/ and …

.i/
˛i � …

.i/
˛i .ti / by X

.i/
˛i �

X
.i/
˛i .�i / (or their adjoints), i D 1; : : : ; n, with�1 � : : : � �n. Wherever possible,

we will, however, consider self-adjoint operators and their spectral projections,
instead of POVM’s, throughout this essay; (but see Remark 5.8, Sect. 7.5.4).

7.5 Removing the Veil: Empirical Properties of Physical
Systems in Quantum Mechanics

In a classical model of a physical system, S , properties of S exist a priori. They
are represented by real-valued continuous (or measurable) functions on the state
space,MS , of the system. In contrast, in a quantum-mechanical model of a physical
system, the system can still be characterized by a list, PS , of potential properties
(represented by self-adjoint operators); but these properties do not exist a priori.
Whether they correspond to empirical properties of S , or not, depends on the choice
of the environment E; (e.g., on the experiments that are made). The question then
arises what the empirical properties are that will be observed in the course of
time, given the time evolution f
t;sgt;s2R of S D S _ E and its state ! 2 SS ;
(see Definition 2.1, Sect. 7.2.2). In (7.43), we have identified the fundamental data
underlying a model of S ,

.PS ;AS ; f
t;sgt;s2R � �Aut.AS /; ! 2 SS /; (7.118)
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see also (7.77) and Sect. 7.2.2. These data ought to determine which empirical
properties S exhibits and what family of histories of events (but, of course, not which
history) will be recorded in the course of time if S is monitored/observed when
coupled to a given environment/equipment E . We have seen in Sect. 7.4 that the
answer to the question of what exactly the data in (7.118) determine is not obvious.

7.5.1 Information Loss and Entanglement

Let a be a potential property of S (a D a� 2 PS ). We assume, for simplicity,
that spec a consists of finitely many eigenvalues, ˛1; ˛2; : : : ; ˛k . Let ! be the
state of S D S _ E , and let us suppose that, thanks to an appropriate choice
of E , the potential property a is observed (i.e., becomes an empirical property
of S ) around some time t . According to almost everybody’s understanding of
quantum mechanics, the following claim appears to be reasonably plausible: After
the observation of a at a time  t , S evolves as if its state where given by

! �!
kX

iD1
pi!i ; (7.119)

where pi is the probability to observe the value ˛i of a, and !i is a state with the
property that if a were observed in a system prepared in the state !i at time  t

then its value would be ˛i with certainty. If no measurements are made before a is
observed then, according to Born [11],

pi D !.…i.t//;

where…i.t/ is the spectral projection of the operator a.t/ D 
t;t0 .a/ corresponding
to the eigenvalue ˛i , (with t the time of measurement of a). Note that the state
in (7.119) is usually a mixed state, i.e., an incoherent superposition of the states
!i , even if ! is a pure state. It is perceived as one aspect of the “measurement
problem” to understand how a pure state can evolve into a mixture. (Another aspect
is to understand why the state of S is given by !i , right after the measurement of a,
if a is measured to have the value ˛i , for some i D 1; : : : ; k. This will be discussed
in Sects. 7.5.4 and 7.5.6.)

In order to explain why the first aspect of the measurement problem does not
represent a serious problem, we have to return to an analysis of two fundamental
phenomena: (LoI) Loss of information into E; and (E) Entanglement between S
and E .

In Definition 2.2 of Sect. 7.2.3, we have introduced algebras, E�t , of potential
properties of S observable/measurable after time t . These algebras are C �-
subalgebras of the algebra AS . We have denoted by ES the smallest C �-algebra
containing E�t , for all t 2 R; see Eq. (7.47). Clearly ES � AS . As indicated
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in Sect. 7.2.3, it is the consequence of a general principle—“Duality between
Observables and Indeterminates”—that ES is properly contained in AS (and that
the relative commutant of ES inside AS contains a subalgebra isomorphic to ES ).
This principle will be discussed in the context of examples in a forthcoming
communication.

The algebra ES carries an action of the group R of time translations by
�automorphisms f
 tgt2R, where 
 t determines �morphisms


 t W E�t 0 �! E�tCt 0 
 E�t 0 ;

for all t 0 2 R and all t � 0; see (7.50) and (7.51).
Thus, in hindsight, the mathematical data enabling one to predict the behavior of

a physical system S in the course of time, given its state, can be chosen to consist
of the filtration of algebras

AS � ES � E�t � E�t 0 � fC1g; t 0 � t; (7.120)

along with a specification of �morphisms (time translations)


 t W E�t 0 �! E�tCt 0 
 E�t 0 ; (7.121)

for t 0 2 R, t � 0, and of a state !,

! W state on AS : (7.122)

In Definition 2.4, Sect. 7.2.3, we have introduced the von Neumann algebras E!�t ,
t 2 R, and E!S . (We recall that if !0 is an arbitrary state on ES normal with respect
to ! then E!0

S D E!S and E!0

�t D E!�t , for all t .)
Loss of information (LoI) is the phenomenon that if successful measurements of

potential properties of S have been made between some times t and t 0 > t then E�t 0
is strictly contained in E�t . Together with the phenomenon of entanglement (E), this
may entail that the restriction of the state ! to the algebra E�t 0 is a mixture (i.e.,
an incoherent superposition of approximate eigenstates of some physical quantity,
as in (7.119)), even if ! is a pure state of ES .

While (LoI) is common to classical and quantum-mechanical models of physical
systems, (E) and (7.119) (with pi > 0, for two or more choices of i ) is
specific to quantum-mechanical models. We have seen in Sect. 7.2.3 that, quantum-
mechanically, .LoI/ may manifest itself in the property that some of the relative
commutants,

.E!�t /0 \ E!�t 0 (7.123)
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are non-trivial, for some t > t 0; (see (7.49)). If E!�t is a factor (i.e., a von Neumann
algebra with trivial center, as defined in Sect. 7.2.1, (7.25)) then (7.5.6) implies that

E!�t ¨ E!�t 0 : (7.124)

7.5.2 Preliminaries Towards a Notion of “Empirical
Properties” of Quantum Mechanical Systems

Let a D a� 2 ES be an operator representing a potential property (or physical
quantity) of S (i.e., a D 
t 0;t0 .c/; c 2 PS ), and let ! denote the state of S . We
assume that a has a finite spectrum,

a D
kX

iD1
˛i…i ; k < 1; (7.125)

where ˛1; : : : ; ˛k are the eigenvalues of a (now viewed as a self-adjoint operator in
the von Neumann algebra E!S ), and …i � …

.i/
˛i 2 E!S is the spectral projection of a

corresponding to ˛i , i D 1; : : : ; k. How should we define empirical properties of
S? To say that a is an empirical property of S at some time t 0 earlier than t , i.e., that
a is measured (or observed) before time t , means that

!.b/ 
kX

iD1
!.…ib…i/; (7.126)

for all b 2 E!�t ; i.e., !jE!
�t

is close to an incoherent superposition (mixture) of
eigenstates, p�1i !.…i .�/…i/ (pi ¤ 0), of a, where pi D !.…i/, (and pi > 0,
for at least one choice of i ). A sufficient condition for Eq. (7.126) to hold is that

a 2 .E!�t /0 \ E!S : (7.127)

If there existed a sequence of times, t1 < t2 < : : : < tn, and self-adjoint operators
a1; : : : ; an, with finite point spectra, as above, and

al 2 .E!�tlC1/0 \ E!�tl ;

l D 1; : : : ; n � 1, an 2 E�tn , then the family of histories

hn1.j / D f….1/
j1
; : : : ;…

.n/
jn

g;
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where ….l/
jl

is the spectral projection of al corresponding to the eigenvalue ˛.l/jl of
al , l D 1; : : : ; n, is consistent; see (7.96)–(7.100), Sect. 7.4.3. For this observation
to be interesting, the relative commutants .E!�tlC1/

0 \ E!�tl would have to be non-
trivial and if we wish to escape from critique (iii) at the end of Sect. 7.4.3 the
algebras .E!�tlC1/

0 \ E!�tl would have to be abelian, for all l . This does not look
like a satisfactory or plausible assumption, and we have to continue our search for a
good notion of “empirical properties”!

Definition 5.1 (i) Given von Neumann algebras M 
 N , a state ! on N and an
operator a 2 N , we define fa; !�M to be the bounded linear functional on M
defined by

fa; !�M.b/ WD !.Œa; b�/; b 2 M: (7.128)

(ii) The centralizer (or stabilizer), C!M, of ! is the subalgebra of M defined by

C!M WD fa 2 M j fa; !�M D 0g: (7.129)

It is easy to see that ! defines a trace on C!M. This means that C!M is a direct
sum (or integral) of finite-dimensional matrix algebras, type-II1 factors and abelian
algebras.

Remark 5.2 Centralizers of states or weights on von Neumann algebras play an
interesting role in the classification of von Neumann algebras, (in particular in the
study of type-III factors); see [19, 45]. In an appendix to Sect. 7.5, we recall a few
relevant results on centralizers.

Obviously, strict equality in Eq. (7.126) follows from the assumption that

fa; !�E!
�t

D 0; a 2 E!�t : (7.130)

In other words, condition (7.130) implies that, as a state on the algebra E!�t of
possible events in S observable after time t , ! is an incoherent superposition of
eigenstates of a, even if, as a state on ES , ! is pure. However, to convince oneself
that ! is a mixture (incoherent superposition) it is often enough to assume that the
norm of the linear functional fa; !�E!

�t
, with a 2 E!�t , is small. Let us suppose

that a is self-adjoint and that its spectrum consists of finitely many eigenvalues
˛1 > ˛2 > : : : > ˛k . Then

a D
kX

iD1
˛i…i ;

where …1; : : : ;…k are the spectral projections of a satisfying …i D …�i , …i…l D
ıil…l , for all i; l D 1; : : : ; k, and

Pk
iD1 …i D 1. The following result is easily

proven.



7 Quantum Probability Theory and the Foundations of Quantum Mechanics 173

Lemma 5.3 The following assertions are equivalent:

(i) jfa; !�E!
�t
.b/j < �kbk; 8b 2 E!�t

(ii) j!.b/ �Pk
iD1 !.…ib…i/j 	 const. �kbk; 8b 2 E!�t .

In view of Lemma 5.3, one might be tempted to identify elements of the
centralizer

C!�t WD C!E!
�t

(7.131)

with empirical properties of S observable at times � t . Yet, this is not quite the
right idea!

(1) A family of operators, a1; : : : ; an, with

ai 2 C!�ti ;

i D 1; : : : ; n, t1 < t2 < : : : < tn, does not necessarily give rise to a
family of consistent histories. The reason is exceedingly simple: Let ….i�1/

l ,
l D 1; : : : ; ki�1, be the spectral projections of ai�1 2 C�ti�1 . Let !l denote the
state

!l.b/ D p�1l !.…
.i�1/
l b…

.i�1/
l /;

where pl D !.…
.i�1/
l / > 0. Let us assume that pl > 0 for at least two distinct

values of l . The problem is that, in general, the assumption that ai 2 C!�ti does
not imply that ai 2 C!l�ti , for all l D 1; : : : ; ki�1 for which pl > 0; this is the
phenomenon of “spontaneous symmetry breaking”. This means that the “sum
rule” (7.84), Sect. 7.4.1, may be violated at the i th slot, for some 1 < i < n.
Hence the family a1; : : : ; an may not give rise to a family of consistent histories.

(2) In general, the centralizers C!�t are non-abelian algebras. If the centralizers
C!�t are non-commutative algebras then identifying empirical properties of
S observable at times � t with elements of C!�t is subject to critique (ii),
Sect. 7.4.3. Our task is then to find out which elements of C!�t may correspond
to empirical properties of S . (The center of C!�t is denoted by Z!�t . If Z!�t were
known to contain operators representing potential properties of S then these
operators could be interpreted as empirical properties of S observed at some
times � t , and critique (ii) of Sect. 7.4.3 would not apply, anymore.)

7.5.3 So, What are “Empirical Properties”
of a Quantum-Mechanical System?

Consider the data characterizing a physical system as specified in (7.120)–(7.122).
Let E�t be the algebra of physical quantities pertaining to a system S that can be
observed at times � t , and let ES be the C �-algebra obtained as the norm closure
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of _
t2REt . Let ! be a state on ES . By C!�t we have denoted the centralizer of the state

! (viewed as a state on the von Neumann algebra E!�t corresponding to the weak
closure of E�t in the GNS representation associated with .ES ; !/). We have seen,
after definition (7.129), that !jC!

�t
is a trace on C!�t . This implies that

C!�t D
Z ˚

ƒ

C!�t;� ; (7.132)

where every algebra C!�t;�, � 2 ƒ � ƒ! , is either a finite-dimensional matrix
algebra,  Mn�.C/, of n� � n� matrices, with 1 	 n� < 1, or a type-II1 factor;
(see [69], Theorem 8.21 in Chapter 4, and Theorem 2.4 in Chapter 5). If C!�t;� is
isomorphic to Mn�.C/ then

!jC!
�t;�

/ trCn� .�/: (7.133)

Let us assume, temporarily, that ƒ is discrete, and

C!�t D
�̊2ƒ

C!�t;�; (7.134)

with

C!�t;� ' Mn�.C/; n� < 1; (7.135)

for all � 2 ƒ. Then E!�t is a von Neumann algebra of type I and

!jE!
�t

DW �!�t ; (7.136)

where �!�t is a density matrix, so that

�!�t D
X

�2ƒ
p�.t/…�.t/; (7.137)

and the operators …�.t/ � …!
� .t/ are the eigenprojections of �!�t , with

dim.…�.t// D n� < 1, the weights p�.t/ � p!� .t/ � 0 are the eigenvalues
of �!�t , arranged in decreasing order, and

tr.�!t / D
X

�2ƒ
p�.t/dim.…�.t// D 1:

Then C!�t;� ' Mn�.C/ is the algebra of all bounded operators from the eigenspace
Ran …�.t/ to itself, and

!jC!
�t;�

D p�.t/tr.…�.t/.�//:
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Any operator a 2 E!�t commuting with all the projections…�.t/, � 2 ƒ, belongs to
C!�t , and any operator in the center Z!�t of C!�t is a function of the projections…�.t/,
� 2 ƒ! . In particular…�.t/ 2 Z!�t � C!�t , for all �, (and hence the eigenprojections
of �!�t might qualify as empirical properties of S ).

Henceforth, we consider the special case specified in Eqs. (7.134)–(7.137); (but
see Remark (1) of Sect. 7.5.5, and Appendix 7.5.A).

Definition 5.4 Let a D a� be an operator in E!�t . We define

a� WD 1

n�
tr.…�.t/a/: (7.138)

If � is such that p�.t/ > 0 then

a� WD 1

p�.t/n�
!.…�.t/a/:

Note that 1
� D 1. We set

a! WD
X

�2ƒ
a�…�.t/ 2 Z!�t � C!�t (7.139)

and define the “variance of a in !” by

�!
t a WD

sX

�2ƒ
p�.t/Tr.…�.t/.a � a� � 1/2/ D

p
!..a � a!/2/: (7.140)

We observe that if �!
t a D 0 then a 2 C!�t , and, on the range of �!t , ajRan�!t D

a! jRan�!t is a function of �!t , i.e., ajRan�!t 2 Z!�t . For a general element, a, of E!�t ,

jfa; !�E!t .b/j D j!.Œa; b�/j D j!.Œa � a!; b�/j
	 2

p
!..a � a!/2/!.b�b/ 	 2�!

t a kbk;
(7.141)

for arbitrary b 2 E!�t . Thus, if �!
t a is small then kfa; !�E!

�t
k is small, too, and

Lemma 5.3 then tells us that !jE!
�t

is close to an incoherent superposition of
eigenstates of a.

Let d�.˛/ denote the spectral measure of the operator a D a� 2 E!�t in the
state

n�1� tr.…�.t/.�//:
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Then

0 	 !..a � a!/2/ D
X

�2ƒ
p�.t/n�

1

n�
tr.…�.a � a�/2/

D
X

�2ƒ
p�.t/n�

Z

d�.˛/.˛ � a�/2:

Thus,

p�.t/n�

Z

d�.˛/.˛ � a�/2 	 .�!
t a/

2;

for every � 2 ƒ. We conclude that if, for some � 2 ƒ,

1

p�.t/n�
.�!

t a/
2 < �2;

for some � > 0, then a has spectrum at a distance less than � from a�. In particular,
if a has discrete spectrum then a has at least one eigenvalue ˛�, with

j˛� � a�j < �: (7.142)

Next, let a 2 PS be the operator representing some potential property of S . Then
a.t/ WD 
t;t0 .a/ 2 E!�t .

Definition 5.5 We say that a potential property of S represented by an operator
a 2 PS is an empirical property of S at time t within an uncertainty (of size) ı � 0 iff

�!
t a.t/ 	 ı: (7.143)

Remark 5.6 If ı is below the resolution threshold of the equipment used to monitor
S then, FAPP, a.t/ indeed represents an empirical property of S at time t , in the
following sense:

(1) kfa.t/; !�E!
�t

k is so small that it cannot be distinguished from 0;
(2) !.b/  P

i !.…i .t/b…i .t//, for all b 2 E!�t , where …1.t/;…2.t/,. . . are the
spectral projections of a.t/, (assuming a D a� has discrete spectrum; see
Lemma 5.3 for a precise statement);

(3) on the range of the density matrix �!�t , a.t/ is “close” to the operator a.t/! 2
Z!�t ;

(4) a has eigenvalues near the numbers a.t/
�
, for all � 2 ƒ! for which

.p�.t/n�/
�1ı2 is small.
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One may then argue that if �!
t a.t/ is very small, and if a measurement or

observation of a 2 PS at a time  t indicates that it has a value ˛  a.t/
�

then one
may use the state

!� WD 1

n�
tr.…�.t/.�// (7.144)

to predict the behavior of the system S at times later than t . This idea, reminiscent
of “state collapse”, will be further discussed below.

Note that the maximal uncertainty ı admissible in statement (2) above depends
on the spectrum of the operator a.

7.5.4 When Does an Observation or Measurement
of a Physical Quantity Take Place?

Let a D a� 2 PS represent a potential property of a quantum-mechanical system
S , which is assumed to be prepared in a state ! on the algebra ES . We propose to
analyze whether and when a corresponds to an empirical property of S , in the sense
that, given the time evolution f
t;sgt;s2R of S and the state !, a is measurable (i.e.,
the value of a can be measured or observed) at some finite time. Definition 5.5 and
the discussion thereafter suggest to consider the variance �!

t a.t/ (a.t/ D 
t;t0 .a/),
of a.t/ as a function of time t . This function is non-negative and bounded. Let ı be
some non-negative number below the resolution threshold of the equipment used to
monitor S . Let t� be defined as the smallest time such that

�!
t�
a.t�/ 	 ı: (7.145)

Then it is reasonable to say that a is observed/measured—put differently, a becomes
an empirical property of S within an uncertainty of size ı—at a time & t�. If the
equipment E used to monitor S is only sensitive to observing the eigenvalue ˛i
of a, i.e., to the possible event …i (spectral projection of a corresponding to the
eigenvalue ˛i ) then one may plausibly say that the possible event…i is observed at
a time & t� iff

�!
t�
a.t�/C 1 � !.…i .t�//

is very small. In this case, we say that the equipmentE prepares the state of S to lie
in the range of the projection …i.t/  P

�2ƒ.i/! …�.t/, with t & t�, where ƒ.i/
! is

defined by the property that j˛i � a.t/�j < ı, for all � 2 ƒ.i/
! . Thus, the function

T!;a.t/ WD �!
t a.t/ (7.146)
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contains all important information on the time around which the potential property
a of S becomes an empirical property; and the function

T i
!;a.t/ WD �!

t a.t/C 1 � !.…i.t// (7.147)

tells us when (around which time) a detector sensitive to the possible event …i

“clicks”; (see also [13, 73] for some ideas on this matter that will not be pursued
here).

Next, we analyze repeated observations/measurements, as in Sect. 7.4.1. It
suffices to consider only two subsequent measurements. Let a D a� 2 PS represent
a potential property of S , and let ı � 0 be a measure for the resolution of the
equipmentE used to monitor S in a measurement of a.

Definition 5.7 For a D a� 2 PS , ı � 0, and a time t� > �1, we define a subset
of states on AS (or on ES � AS ) by

S.a; ı; t�/ WD f! 2 SS j inf
t�t�

�!
t a.t/ < ıg; (7.148)

where ı is so small that properties (1) through (4) in Remark 5.6, above, are valid.

Apparently, S.a; ı; t�/ is the set of states of S with the property that, given the
time evolution f
t;sgt;s2R, the operator a corresponds to an empirical property of S ,
within an uncertainty of size ı, that is measurable at some time after t�.

Next, we consider two potential properties of S represented by two self-adjoint
operators, a1 and a2, and we suppose that, first, a1 and, afterwards, a2, are measured.
For simplicity we suppose that the spectra of a1 and a2 consist of finitely many
eigenvalues ˛.i/j , j D 1; : : : ; ki < 1, i D 1; 2. We assume that the state, !, of
S before the measurement of a1, belongs to S.a1; ı1; t1�/, for a sufficiently small
number ı1 (below a threshold of resolution). Then �!

t1
a1.t1/ 	 ı1, at some time

t1 � t1�. A successful measurement of a1 around some time t1 � t1� results in the

assignment of a value ˛.1/j  a1.t1/
�
, � 2 ƒ.j /

! , to the physical quantity represented
by a1, where

ƒ.j /
! WD f� 2 ƒ! j ja1.t1/� � ˛

.1/
j j < ı1g: (7.149)

(For consistency, we assume that min
j¤l

j˛.1/j � ˛
.1/

l j > 2ı1:) The probability of this

measurement outcome is given by

P
.1/
j .t1/ D

X

�2ƒ.j /!
!.…!

� .t1// D
X

�2ƒ.j /!
p!� .t1/n

!
� D !.…

.1/
j .t1//C O.ı1/;

(7.150)

where p�.t1/ � p!� .t1/, n� � n!� D dim…!
�.t1/, and …�.t1/ � …!

�.t1/ are as
defined in Eqs. (7.136) and (7.137), (the superscript “!” is supposed to highlight the
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dependence on the state !), and….1/
j .t1/ is the eigenprojection of the operator a1.t1/

corresponding to the eigenvalue ˛.1/j . If P .1/
j .t1/ is very small one can ignore the

possibility that, for a system S prepared in the state !, an observation/measurement
of a1 will yield a value  ˛

.1/
j .

Let !j denote the state

!j .b/ D
P

�2ƒ.j /! !.…!
� .t1/b…

!
� .t1//

P
.1/
j .t1/

D !.…
.1/
j .t1/b…

.1/
j .t1//

!.…
.1/
j .t1//

C O.ı1/;

(7.151)

for an arbitrary operator b 2 E!�t , with t � t1; (recall that E!�t 
 E!�t1 , for t � t1).

Let us suppose that, for all j 2 f1; : : : ; k1g for which P .1/
j .t1/ > ı2 > 0,

!j 2 S.a2; ı2; t .j /2� /; (7.152)

for some time t .j /2� > t1. If ı2 is chosen small enough one may expect to be able to

successfully measure the quantity represented by a2 at a time t2 � t
.j /
2� , assuming

that, at a time t1 < t
.j /
2� , a1 was found to have a value  ˛

.1/
j .

The joint probability to find a value  ˛
.1/
j in a measurement of a1 around some

time t1 and, in a subsequent measurement around a time t2 > t1, a value  ˛
.2/

l of
the quantity represented by a2, (with l 2 f1; : : : ; k2g), is given by

Prob!f….1/
j .t1/;…

.2/

l .t2/g D P
.1/
j .t1/

X

�2ƒ.l/!j

!j .…
!j
� .t2//

D !.…
.1/
j .t1/…

.2/

l .t2/…
.1/
j .t1//C O.ı1 _ ı2/;

(7.153)

whereƒ.l/
!j D f� 2 ƒ!j j ja2.t2/� � ˛

.2/

l j < ı2g, and ı1 _ ı2 D maxfı1; ı2g.
The definitions of centralizers, C!�t1 , etc., and of the variance �!

t a.t/ readily
imply that

k1X

jD1
!.…

.1/
j .t1/…

.2/

l .t2/b…
.2/

l .t2/…
.1/
j .t1// D !.…

.2/

l .t2/b…
.2/

l .t2//C O.ı1/;

(7.154)

and if !j 2 S.a2; ı2; t .j /2� / then

k2X

lD1
!.…

.1/
j .t1/…

.2/

l .t2/b…
.2/

l .t2/…
.1/
j .t1// D !.…

.1/
j .t1/b…

.1/
j .t1//C O.ı1 _ ı2/;

(7.155)
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for an arbitrary operator b 2 E!�t , with t > maxj t
.j /
2� . It is clear how to

extend our discussion to an arbitrary chronological (time-ordered) sequence of
measurements of quantities a1; : : : ; an, (ai 2 PS ;8i ). Moreover, the mathematical
relationship between Eqs. (7.154) and (7.155), on one side, and ı-consistent families
of histories—see (7.92) and (7.93), Sect. 7.4.2—on the other side, is easy to unravel.
We do not wish to discuss further details.

Remark 5.8 (Remark on the Role of POVM’s) It may and will occasionally
happen that, given that a quantity represented by an operator a1 has been
observed/measured, the quantity represented by the operator a2 can be measured,
subsequently, only for certain, but not all, outcomes of the measurement of a1.
More precisely, it may happen that, for some eigenvalues ˛1j , j 2 G, of a1,

!j 2 S.a2; ı2; t .j /2� /, while, for i 2 B WD f1; : : : ; k1g nG,

!i … S.a2; ı2; t2�/; (7.156)

for any t2� < 1; (ı1 and ı2 being chosen appropriately, depending on the resolution
of the corresponding measurements, as discussed above).

If B ¤ ; then one must take the position that the observations of a1 and
a2 represent one single measurement, which must be described using “posi-
tive operator-valued measures” (POVM’s)—see Appendix 7.4.A, Eqs. (7.113) and
(7.114):

X D fXjl; Xi j j 2 G; l D 1; : : : ; k2; i 2 Bg (7.157)

where, for j 2 G,

Xjl D
X

�12ƒ.j /!

X

�22ƒ.l/!j

…
!j
�2
.t
.j /
2 /…!

�1
.t1/  …

.2/

l .t
.j /
2 /…

.1/
j .t1/; (7.158)

(up to a small perturbation of O.ı1 _ ı2/), while, for i 2 B ,

Xi D
X

�12ƒ.i/!
…!
�1
.t1/  …

.1/
i .t1/; (7.159)

where t1 and t .j /2 are the times of measurement of a1 and a2, respectively. Then

X

j2G

k2X

lD1
X�jlXjl C

X

i2B
X�i Xi D 1: (7.160)

The use of POVM’s will be discussed in more detail and in connection with
concrete examples elsewhere. Here we just remark that simple examples showing
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why one needs to introduce POVM’s are encountered in the analysis of repeated
Stern–Gerlach measurements of atomic spins (followed by detectors sensitive to the
arrival of the atoms).

7.5.5 Generalizations and Summary

(1) In order to keep our exposition reasonably simple, we have made the simplify-
ing assumptions (7.134) and (7.135). It is, however, not very hard to develop our
ideas in full generality. For this purpose, we must return to formula (7.132): The
space ƒ D ƒ! appearing in (7.132) is the spectrum of the center, Z!�t , of the
centralizer, C!�t , of the state !, viewed as a state on the algebra E!�t . The theory
of “conditional expectations” [68] enables us (under fairly general hypotheses)
to construct a conditional expectation P��t W E!�t ! Z!�t , which permits us to
associate with every operator a 2 E!�t an operator a! 2 Z!�t . The map a 7! a!

is linear, and .a!/! D a! . (In the special case where Eqs. (7.134) and (7.135)
hold it is given by formula (7.139).) Having constructed a! , we set

�!
t a WD

p
!..a � a!/2/:

From this point on, we may follow the arguments from (7.141) onwards, and in
Sect. 7.5.4.

(2) In our approach to the “quantum theory of experiments/quantum measurement
theory”, the “ontology” underlying a quantum-mechanical model of a physical
system S is represented by

(a) a set, PS , of physical quantities characterizing S ;
(b) a filtration of C �-algebras

ES � E�t � E�t 0 � fC � 1g; t 	 t 0;

and �morphisms


 t W E�t 0 �! E�t 0Ct 
 E�t 0 ;

for t � 0;
(c) a state ! on ES ;
(d) the centralizers C!�t of !jE�t

and their centers Z!�t .

If S is prepared in a state ! before one attempts to measure a physical quantity
represented by an operator a 2 PS then the measurement is successful around
some time t if a.t/ D 
t;t0 .a/ is “close” to an operator in Z!�t , in the sense that
the variance,�!

t a.t/, of a.t/ in ! is small.
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(3) Let us return to the special situation described in Eq. (7.134) through
Eq. (7.137). Suppose that all the algebras E!�t , t 2 R, are isomorphic to a
fixed factor E ' B.H/ of type I1. Then our approach is “dual” to one
where the density matrices f�!�tgt2R are interpreted as states on E and are
considered to be the fundamental objects, and time evolution is described in
terms of completely positive maps on the space of density matrices. With
the idealization/approximation that time evolution is given by a groupoid of
completely positive maps, this is the point of view popular among quantum
information scientists; (see, e.g., [53]).

The trajectories of density matrices f�!�t gt2R are then what replaces the
trajectories f�t D �t;t0 .�0/gt2R of a classical system (as discussed in Sect. 7.3).
However, because of the phenomena of information loss and entanglement, the
density matrices �!�t tend to describe mixed states, even if the state ! is a pure
state of the algebra ES , and hence only yield probabilistic predictions, while the
states �t of a classical system are pure, for all t , provided the initial state is pure,
and hence yield deterministic predictions.

(4) It is clearly important to extend our theory to local relativistic quantum theory
(LRQT). In LRQT, the algebras E�t , t 2 R, are replaced by algebras, EP ,
of “observables” localized inside the forward light cone of a point P (the
momentary position of an observer) on a time-like curve in space-time, (the
observer’s world line). If the theory describes a massless photon and if !
is a state normal to the vacuum then the von Neumann algebras E!P are all
isomorphic to the hyperfinite factor of type III1, as discussed in [17]. Hence
the algebras E!P do not have any pure states, and the principle of Loss of
Information (LoI) is a fundamental feature of the theory. We will return to
this topic elsewhere.

(5) It is clearly important to understand how quantum-mechanical systems can be
prepared in specific states (“preparation of states”). This topic will be discussed
in [34]; but see also (7.144) and the remark right above (7.146). Moreover, it is
quite crucial to back up the general analysis presented in this essay with simple
models of “information loss” and “decoherence/dephasing”. This will be done
in a forthcoming publication.

The last topic we briefly address in this essay is a theory of weak (non-
demolition) experiments, following [6]. This theory explains why in many experi-
ments, the system ends up being in an eigenstate of the operator representing the
quantity that is measured, i.e., why “facts” emerge in non-demolition measure-
ments.

7.5.6 Non-demolition Measurements

After having presented a long and rather abstract discussion of “direct (or von
Neumann) measurements”, in Sects. 7.5.3–7.5.5, we wish to sketch the theory of
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“indirect (non-demolition) measurements”. The main results described here have
recently appeared in [6]; see also [1]. The practical importance of these results
comes from recent experiments; see, e.g., [42].

We consider a physical system S (e.g., the quantized electromagnetic field in
a cavity). We wish to measure a physical quantity represented by an operator
a D a� 2 AS (e.g., the photon number inside the cavity) with the help of
“non-demolition measurements”. For this purpose, we bring S into contact with a
sequence,E1,E2, E3,. . . , of identical “probes” (e.g., excited atoms passing through
the cavity); the interaction ofEk with S is supposed to take place in the time interval
Œk � 1; k� and is supposed to be turned off during all other times. Actually, after
some direct measurement of a property bk D b�k 2 AEk at a time later than k—as
described abstractly in Sect. 7.5.4—probe Ek “gets lost for ever”, in the sense that
no further information about Ek can be retrieved, anymore.

Let � denote the initial state of S and  .k/ WD  the initial state of probe Ek ,
(the same for all k). For simplicity, we assume that the spectrum of the operator a
representing the physical property of S to be measured is finite pure-point spectrum.
We denote the spectral projection corresponding to an eigenvalue ˛ of a by …˛ D
…�̨. Then

…˛…ˇ D ı˛ˇ…˛;
X

˛

…˛ D 1:

Next, we specify the time-evolution of the composed system S _ E1 _ E2 _ : : : W
Up to time k D 1; 2; 3; : : : ;, the time evolution of Ej is assumed to be trivial, for
all j > k. For the subsystem S _E1 _ : : : :_Ek it is specified as follows: Let A˛;˛0

be an arbitrary operator in AS mapping Ran …˛0 to Ran …˛, with …ˇA˛;˛0…ˇ0 D
ı˛ˇı˛0ˇ0A˛;˛0 . Let Bj be an operator in AEj , j 	 k. Then the time-evolution of
A˛;˛0 ˝ B1 ˝ : : :˝ Bk from time 0 to time k in the Heisenberg picture is given by


k;0.A˛;˛0 ˝ B1 ˝ : : :˝ Bk/ WD A˛;˛0 ˝ U˛B1U
�
˛0 ˝ : : :˝ U˛BkU

�
˛0 ;

where U˛ is a unitary operator in AEk ' AE , for all ˛ 2 spec a. Defining

U.i; i � 1/ WD
X

˛

…˛ ˝ 1 ˝ : : :˝ U˛ ˝ 1 ˝ : : : ;

with U˛ inserted in the .i C 1/st factor of the tensor product, we have that


k;0.A˛;˛0 ˝ B1 ˝ : : :˝Bj / D
1Y

iDk

U.i; i � 1/.A˛;˛0 ˝ B1 ˝ : : :˝ Bj /

kY

iD1

U.i; i � 1/�

D 
k;0.A˛;˛0 ˝ B1 ˝ : : :˝ Bk/˝ BkC1 ˝ : : :˝ Bj ;

(7.161)
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for arbitrary j � k. This is a typical (albeit highly idealized) example of time-
evolution in a non-demolition measurement. Let ‰ WD �˝ ˝ ˝ : : : denote the
initial state of the composed system, S _ E1 _ E2 _ : : :. If we set

B1 D B2 D : : : D Bk0 D 1;

for some k0 < 1 then

‰ .
k;0.A˛;˛0 ˝ 1 ˝ : : :˝ 1 ˝ Bk0C1 ˝ : : :˝ Bk0Cl //

D �.A˛;˛0/ .U˛U
�̨
0/
k0

kY

iDk0C1
 .U˛BiU

�̨
0/

k0ClY

iDkC1
 .Bi /;

(7.162)

for k0 	 k 	 k0 C l . Because U˛ is unitary, for all ˛ 2 spec a,

j‰.U˛U �˛0/j 	 1; for all ˛; ˛0;

by the Cauchy–Schwarz inequality. We assume that

j‰.U˛U �̨0/j 	  < 1; for ˛ ¤ ˛0: (7.163)

Then, for ˛ 6D ˛
0

j‰ .
k;0.A˛;˛0 ˝ 1 ˝ : : :˝ 1 ˝ Bk0C1 ˝ : : :˝ Bk0Cl // j 	 k0 ; (7.164)

which, by Eq. (7.163), tends to 0 exponentially fast, as k0 ! 1, for arbitrary
A˛;˛0 , Bk0C1,. . . ,Bk0Cl , with kA˛;˛0 k, kBk0C1k,. . . , kBk0Clk bounded by 1. This is
“decoherence” over the spectrum of the operator a representing the quantity to be
measured:

‰jE�k0
�!

X

˛

‰.…˛.�/…˛/jE�k0
; (7.165)

as k0 ! 1, where E�k0 is the algebra introduced in Definition 2.2. Henceforth, we
choose an initial state, �, for S satisfying

� D
X

˛

�.…˛.�/…˛/ D
X

˛

p˛�˛;

where

p˛ D �.…˛/; �˛ D p�1˛ �.…˛.�/…˛/: (7.166)
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We assume that (after many identical probes have interacted with S , so that
decoherence over the spectrum of the observable a has set in) a direct measurement
of a physical quantity represented by an operator b D b� 2 AE is carried out
on every probe Ek ' E , after it has interacted with S . We assume that the
spectrum of b is pure-point, with eigenvalues denoted by � and corresponding
spectral projections written as �� . Then �� D ��� and

����0 D ı��0��;
X

�

�� D 1: (7.167)

The probability, .�
k
j˛/, of a history

�
k

WD f��1 ; : : : ; ��k g (7.168)

of possible outcomes of those direct measurements in the state ‰˛ defined by

‰˛ WD �˛ ˝  ˝  ˝ : : : ;

with �˛ as in Eq. (7.166), is given by

.�
k
j˛/ D

kY

iD1
p.�i j˛/; (7.169)

where

p.�j˛/ WD  .U˛��U
�̨/: (7.170)

Note that
P

� p.�j˛/ D 1, by Eq. (7.167) and the unitarity of U˛ . In the following,
we identify �� with � and use the notation �

k
D .�

k�1; �k/. In the initial state ‰, the
probability of the history �

k
is then given by

.�
k
/ D

X

˛

p˛.�k
j˛/: (7.171)

Next, we calculate the probability, p.k/.˛j�
k
/ of the possible event …˛, given that

a history �
k

is observed on the first k probes, and given the initial state ‰. By
Eqs. (7.166) and (7.169)–(7.171),

p.k/.˛j�
k
/ D p˛

.�
k
j˛/

.�
k
/
; (7.172)
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(with p˛ D �.…˛/; see Eq. (7.166)). These probabilities have the following
properties:

(i)

0 	 p.k/.˛j�
k
/ 	 1; and

X

˛

p.k/.˛j�
k
/ D 1:

(ii)

p.k/.˛j�
k
/ D p˛

.˛j�
k�1/

.�
k
/
p.�kj˛/

D p.k�1/.˛j�
k�1/

.�
k�1/

.�
k
/
p.�k j˛/

D p.k�1/.˛j�
k�1/

p.�kj˛/
P

ˇ p
.k�1/.ˇj�

k�1/p.�k jˇ/
;

(7.173)

because, by Eqs. (7.171), (7.169) and (7.172),

.�
k
/

.�
k�1/

D
X

ˇ

pˇ
.�

k�1jˇ/
.�

k�1/
p.�k jˇ/

D
X

ˇ

p.k�1/.�
k�1jˇ/p.�kjˇ/:

(7.174)

(iii) The expectation, Ek , of p.k/.˛j�
k
/, given ˛ and �

k�1, satisfies

Ekp
.k/.˛j�

k
/ WD

X

�k

p.k/.˛j�
k�1; �k/

.�
k�1; �k/P

�k
.�

k�1; �k/

D
X

�k

p.k/.˛j�
k�1; �k/

.�
k
/

.�
k�1/

D
X

�k

p˛
.�

k�1j˛/p.�k j˛/
.�

k
/

.�
k
/

.�
k�1/

D
X

�k

p.k�1/.˛j�
k�1/p.�kj˛/ D p.k�1/.˛j�

k�1/;

(7.175)

(see below Eq. (7.170)).
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Properties (i) and (iii) identify the random variables fp.k/.˛j�
k
/ j ˛ 2 spec ag as

bounded martingales. The Martingale Convergence Theorem (see e.g., [58]) then
implies that

p.k/.˛j�/ �!
k!1 p

.1/.˛j�/;

where � D �1, and p.k/.˛j�/ does not depend on �kC1; �kC2; : : :. Property (ii) then
implies that, for every �1 2 spec b,

p.1/.˛j�/ D p.1/.˛j�/ p.�1j˛/
P

ˇ p
.1/.ˇj�/p.�1jˇ/ : (7.176)

If for all ˛; ˇ 2 spec a with ˛ 6D ˇ, there exists � 2 spec b such that p.�; j˛/ 6D
p.�jˇ/ then Equation (7.176) and

p.1/.˛j�/ D ı˛˛0 ; (7.177)

for some ˛0 (depending on �).
Thus, for almost every history � D �1 of outcomes of “von Neumann

measurements” of the probes E1;E2; : : : :; the state ‰ ı 
k;0, conditioned on �1,
converges on AS to an eigenstate of the operator a 2 AS representing the physical
quantity to be measured, as k ! 1. The probability (with respect to the histories
�1) of convergence to an eigenstate corresponding to the eigenvalue ˛ of a is given
by p˛; (see Eq. (7.166)). Stated differently, the range of values of the functions
p.1/.˛j�/ on the space of histories consists of f0; 1g, and, for almost every history
�1,

P
˛ p

.1/.˛j�1/ D 1. These are the results that have been announced in
Sect. 7.1.2; see (7.21).

It is not hard to see that the approach of the state of S to an eigenstate of a is
exponential in the time k. This is a “large-deviation estimate” established in [6].
It involves use of a “dynamical relative entropy”. The techniques sketched in this
subsection have interesting applications to Mott’s problem of “particle tracks” in
quantum theory.

For a mathematical theory of “preparation of states” in quantum mechanics, see
[33, 35]. Simple models of “information loss” and “decoherence” will be proposed
and studied in a separate publication.

7.5.A Appendix to Sect. 7.5

The purpose of this appendix is to describe some mathematical structure useful to
imbed the material in Sects. 7.5.3 and 7.5.4 into a more general context. In particular,
we do not wish to assume that the algebras E!�t are type-I von Neumann algebras;
(i.e., we do not start from Eqs. (7.134)–(7.136)). To begin with, we summarize some
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further basic facts concerning von Neumann algebras; (see also Sect. 7.2.1). Let M
be a von Neumann algebra, and let ! be a normal state on M. Then .�!;H!;�/

stands for the representation, �! , of M on the Hilbert space H! , with � the cyclic
unit vector in H! (unique up to a phase) such that

!.a/ D h�;�!.a/�iH! : (7.178)

This is the GNS construction applied to .M; !/; see Eq. (7.29), Sect. 7.2.1. We say
that ! is separating for M iff, for any a 2 M,

!.ba/ D 0; 8b 2 M H) a D 0I (7.179)

or, equivalently, �!.a/� D 0 (in H!) implies that a D 0; (it is assumed that �! is
faithful, and we will henceforth write a for �!.a/).

Given a separating state, !, on a von Neumann algebra M, Tomita–Takesaki
theory [12, 67] guarantees that there is a one-parameter unitary group f�i�

! g�2R,
where �! > 0 is a self-adjoint operator on H! (the Tomita–Takesaki modular
operator) and an anti-unitary involution, J! , on H! , with the properties

�i�
! a�

�i�
! 2 M; J!aJ! 2 M0; (7.180)

for all a 2 M and for all � 2 R, (M0 is the commutant of M),

�i�
! � D �; J!� D �; (7.181)

for all � , and

h�; ab�iH! D h�; b�!a�iH! ; (7.182)

for arbitrary a; b 2 M; (KMS condition). If ' is a linear functional on M we define

k'k WD sup
b2M

j'.b/j
kbk (7.183)

Eqs. (7.178) and (7.182) then show that if ! is separating for M,

kfa; !�Mk < � ” k.�!a � a/�kH! < �; (7.184)

for any a 2 M; (recall that fa; !�M.b/ D !.Œa; b�/, b 2 M—see Eq. (7.128),
Sect. 7.5.2). In Eq. (7.129), we have defined the centralizer of ! to be the subalgebra
of M given by

C!M WD fa 2 M j fa; !�M D 0g: (7.185)

We recall that ! defines a trace on C!M. By (7.184),
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C!M D fa 2 M j �!a� D a�g; (7.186)

assuming that ! is separating for M. The following claim is easy to verify (using
Liouville’s theorem for analytic functions of one complex variable, and Eq. (7.186)):
If ! is separating for M

fa; !�M D 0 ” �i�
! a�

�i�
! D a; 8� 2 R; (7.187)

for any a 2 M; (see, e.g., [3]). The group, f˛�g�2R, of �automorphisms of
M defined by ˛� .a/ D �i�

! a�
�i�
! is called the Tomita–Takesaki modular

automorphism group. The equivalence in (7.187) together with Eq. (7.185) show
that if ! is separating for M then the centralizer, C!M, is nothing but the subalgebra
of M of fixed points under the Tomita–Takesaki modular automorphism group. The
following result is due to Takesaki, [68]: Let N be a von Neumann subalgebra of
M, and let ! be a faithful, normal, separating state on M. Then the following
statements are equivalent:

(i) N is invariant under the modular automorphism group f˛�g�2R associated with
.M; !/.

(ii) There exists a (�-weakly) continuous projection, �, of norm 1 (a “conditional
expectation”) of M onto N such that

!.a/ D !jN .�.a//; (7.188)

for all a 2 M.

Remark 5.9 For a; b in N and x 2 M, we have that

�.x�x/ � �.x/��.x/ � 0;

�.axb/ D a�.x/b:



(7.189)

As a corollary of Takesaki’s result on conditional expectations, we have that if ! is
separating for M then

(a) there is a conditional expectation, � D �! , from M onto the centralizer C!M of
! satisfying (7.188); and

(b) there is a conditional expectation, P�! , from M onto the center, Z!
M, of C!M

satisfying (7.188).

Definition 5.10 The variance of an operator a 2 M in the state ! is defined by

�!
Ma WD

p
!..a � a!//; (7.190)

where a! WD P�!.a/.
These general results can be applied to the considerations in Sects. 7.5.2–7.5.4,

with the following identifications:



190 J. Fröhlich and B. Schubnel

M ! E!�t ; C!! ! C!�t ; Z!
M ! Z!�t : (7.191)

We then use the notations �! ! �!�t , P�! ! P�!�t and�!
Ma ! �!

t a; (see Eq. (7.140),
Sect. 7.5.3). Concerning the special case introduced in Eqs. (7.134)–(7.136), we
remark that ! is separating for E!�t iff all eigenvalues of the density matrix �!�t
introduced in Eq. (7.136) are strictly positive (which is generically the case). As an
exercise, the reader may enjoy deriving the explicit formulae for �!�t and P�!�t ; (see
Eq. (7.139)). The material sketched here is important in relativistic quantum theory
(LRQT).
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Chapter 8
Can Relativity be Considered Complete?
From Newtonian Nonlocality to Quantum
Nonlocality and Beyond

Nicolas Gisin

8.1 Introduction

Hundred years after Einstein miraculous year and 70 years after the EPR paper [1], I
like to think that Einstein would have appreciated the somewhat provocative title of
this contribution. However, Einstein would probably not have liked its conclusion.
But who can doubt that relativity is incomplete? and likewise that quantum
mechanics is incomplete! Indeed, these are two scientific theories and Science is
nowhere near its end (as a matter of fact, I do believe that there is no end (in
contrast to [2])). Well, actually, I am, of course, not writing for Einstein, but for those
readers interested in a (necessarily somewhat subjective) account of the peaceful co-
existence [3] between relativity and quantum physics in the light of the conceptual
and experimental progresses that happened during the last 10 years, set in the broad
perspective of physics and nonlocality since Newton (for a lively account of the
history of quantum nonlocality and of the people who made it happen, see: [4]).

8.2 Non-locality According to Newton

Isaac Newton, the great Newton of Universal Gravitation, was not entirely happy
with his theory. Indeed, he was well aware of an awkward consequence of his
theory: if a stone is moved on the moon,1 then our weight, of all of us, here on

1Using a small rocket, so as to displace the center of mass of the moon.
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earth, is immediately modified. What troubled so much Newton was this immediate
effect, i.e. the nonlocal prediction of his theory. Let’s read how Newton described it
himself [5]:

That Gravity should be innate, inherent and essential to Matter, so that one Body may act
upon another at a Distance thro a Vacuum, without the mediation of any thing else, by and
through which their Action and Force may be conveyed from one to another, is to me so
great an Absurdity, that I believe no Man who has in philosophical Matters a competent
Faculty of thinking, can ever fall into it. Gravity must be caused by an Agent acting
constantly according to certain Laws, but whether this Agent be material or immaterial,
I have left to the Consideration of my Readers.

It would have been hard for Newton to be more explicit in his rejection of non-
locality! Note that this indicates that the no-signalling principle (see Sect. 8.10.1) is
part of Newton’s world view, not of relativity. However, most physicists didn’t pay
much attention to this aspect of Newtonian physics. By lack of alternative, physics
remained nonlocal until about 1915 when Einstein introduced the world to General
Relativity. But let’s start 10 years earlier, in 1905.

8.3 Einstein, the Greatest Mechanical Engineer

In 1905 Einstein introduced three radically new theories or models in physics.
Special relativity of course, but more relevant to this section are his descriptions
of Brownian motion and of the photo-electric effect. Indeed, both descriptions
show Einstein’s deep intuition about mechanics. Brownian motion is explained as
a complex series of billiard-ball-like-collisions between a visible molecule—the
particle undergoing Brownian motion—and invisible smaller particles. The random
collisions of the latter explaining the erratic motion of the former. Likewise, the
photo-electric effect is given a mechanistic explanation. Light beams contain little
billiard-balls whose energy depends on the color, i.e. wavelength, of the light. These
light-billiard-balls (today called photons and recognized as not at all billiard-ball-
like) hit the electrons on metallic surfaces and mechanically kick them out of the
metal, provided they have enough energy to do so.

General relativity can also be seen as a mechanical description of gravitation.
When a stone is moved on the moon, a bunch of gravitons (in modern terminology)
fly off in all directions at a finite speed, the speed of light. Hence, about a second
later, the earth is informed and only then is our weight affected. This is, I believe,
the greatest achievement of Einstein, the greatest mechanical engineer2 of all times:
Einstein turned physics into a local theory!

2My friends know well that in my mouth “engineer” has no negative connotation, quite the
opposite. For me, a physicist must be a good theorist and a good engineer! Well, I warned you,
dear reader, this is a somewhat subjective article.
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8.4 Quantum Mechanics Is Not Mechanical

Only about 10 years after general relativity came quantum mechanics. This was
quite an extraordinary revolution. Until then, greatly thanks to Newton and Ein-
stein’s genius, Nature was seen as made out of many little billiard-balls that
mechanically bang into each other. Yet, quantum mechanics is characterized by the
very fact that it no longer gives a mechanical description of Nature. The terminology
quantum mechanics is just a historical mistake, it should be called Quantum Physics
as it is a radically new sort of physical description of Nature.

But this new description let nonlocality back into Physics! And this was
unacceptable for Einstein.

It is remarkable and little noticed that since Newton, physics gave a local
description of Nature only during some 10 years, between about 1915 and 1925.
All the rest of the time, it was nonlocal, though, with quantum physics, in quite a
different sense as with Newton gravitation. Indeed, the latter implies the possibility
of arbitrarily fast signaling, while the former prohibits it.

8.5 Non-locality According to Einstein

In 1935 two celebrated papers appeared in respectable journals, both with famous
authors, both stressing the—unacceptable in their authors view—nonlocal predic-
tion of quantum physics [1, 6]. A lot has been written on the EPR “paradox” and I
won’t add to this. I believe that Einstein’s reaction is easy to understand. Here is the
man who turned physics local, centuries after Newton wrote his alarming text, he is
proud of his achievement and certainly deserves to be. Now, only a few years latter,
nonlocality reappears! Today one should add that quantum nonlocality is quite a
different concept from Newtonian nonlocality, but Einstein did not fully realize this.

What Einstein and his colleagues saw is that quantum physics describes spatially
separated particles as one global system in which the two particles are not logically
separated. What they did not fully realize is that this does not allow for signaling, in
particular no faster than light communication, hence it is not in direct conflict with
relativity. In the next section I’ll try to present this using modern terminology.

Most physicists didn’t pay much attention to this aspect of quantum physics.
A kind of consensus established that this was to be left for future examination, once
the technology would be more advanced. The general feeling was that quantum
nonlocality was nothing but a laboratory curiosity, not serious physics.

Young physicists may have a hard time to believe that such an important concept,
like quantum nonlocality, was, during many decades, not considered as serious. But
this was indeed the real state of affairs: ask any older professors, a vast majority of
them still believes that it is unimportant. Let me add two little stories that illustrate
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what the situation was like. John Bell, the famous John Bell of the Bell inequalities
and of the Bell states, never had any quantum physics student. When a young
physicist would approach him and talk about nonlocality, John’s first question was:
“Do you have a permanent position?”. Indeed, without such a permanent position
it was unwise to dare talking about nonlocality! Notice that John Bell almost
never published any of his remarkable and nowadays famous papers [7] in serious
journals: the battle with referees were too . . . time wasting (not to use a more direct
terminology). Further, if you went to CERN where John Bell held a permanent
position in the theory department and asked at random about John’s contributions to
physics, his work on the foundation of quantum physics would barely be mentioned
(true enough, he had so many other great contributions!).3

Anyway, so quantum nonlocality remained for decades in the curiosity lab and
no one paid much attention. But in the 1990s two things changed. First, a conceptual
breakthrough happened thanks to Artur Ekert and to his Ph.D. adviser David
Deutsch [9]. They showed that quantum nonlocality could be exploited to establish
a cryptographic key between two distant partners and that the confidentiality of the
key could be tested by means of Bell’s inequality. What a revolution! This is the
first time that someone suggested that quantum nonlocality is not only real, but
that it could even be of some use. A second contribution came from the progress
in technology. Optical fibers had been developed and installed all over the world.
And Mandel’s group at the University of Rochester (where I held a 1-year post-doc
position and first met with optics) applied parametric down-conversion to produce
entangled photon pairs [10]. This was enough (up to the detectors) to demonstrate
quantum nonlocality outside the curiosity laboratory. In 1997 my group at Geneva
University demonstrated the violation of Bell inequalities between two villages,
Bernex and Bellevue, around Geneva, see Fig. 8.1, separated by a little more than
10 km and linked by a 15 km long standard telecom fiber [11, 12] (since then, we
have achieved 50 km [13]). So quantum nonlocality became politically acceptable!
But what is it? (for an elementary introduction see [N. Gisin Quantum chance,
Nonlocality, Teleportation and Other Quantum Marvels, Springer 2014].) Let me
introduce the concept using students undergoing “quantum exams”.

8.6 Quantum Exams: Entanglement

Assume that two students, Alice and Bob, have to pass some exams. As always for
exams, the situation is arranged in such a way that the students can’t communicate
during the exam. Clearly however, they are allowed, and even encouraged, to

3Another story happened to me while I was a young post-doc eager to publish some work. In
a paper [8] I wrote “A quantum particle may disappear from a location A and simultaneously
reappear in B, without any flow in-between”. The referee accepted the paper under the condition
that this outrageous sentence is removed. This referee considered his paternalist attitude so
constructive that he declared himself to me: “look how helpful I am to you” (admittedly, he was
politically correct).
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Fig. 8.1 Bernex and Bellevue are the two villages north and south of Geneva between which our
long-distance test of Bell inequality outside the lab was performed in 1997, Sect. 8.5. The inset
represent two player that toss coins, as explained in Sect. 8.7. In the real experiment the coins were
replaced by photons, the players by interferometers, their right and left hands by phase modulators
and head/tail by two detectors. The experimental results are similar to that of the game, with weaker
but still nonlocal correlations

communicate beforehand. Alice and Bob know in advance the list of possible
questions, they also know that this is a kind of exam allowing only for a very limited
number of possible answers, often only a binary choice between yes and no. During
the exam Alice receives one question out of the list, let’s denote it by x; Bob receives
question y. Finally, denote a and b Alice and Bob’s answers, respectively. Hence,
an exam is a realization of a random process described by a conditional probability
function, often merely called a correlation:

P.a; bjx; y/ (8.1)

Clearly, the choice of questions x and y are under the professor’s control. However,
as all professors know, the students’ answers a and b are not! This is similar to
experiments: the choice as to which experiment to perform is under the physicists
control, but not the answer given by Nature.
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In the following, we shall consider three kinds of exams, in order to understand
what kind of constraints they set on the correlation P.a; bjx; y/.

8.6.1 Quantum Exam #1

In this first kind of quantum exam Alice is asked to tell which question is given
to Bob, and vice-versa. This is clearly an unfair exam! Why? Because Alice
and Bob are not supposed to communicate. How could they then succeed with a
probability greater than mere chance?4 This simple example shows that prohibiting
signaling already limits the set of possible correlation P.a; bjx; y/. For example
P.a; bjx; y/ D ı.a D y/ı.b D x/ is excluded.

Notice that a correlation P.a; bjx; y/ is non-signaling if and only if its marginal
probabilities are independent of the other side input:

P
b P.a; bjx; y/ is indepen-

dent of y and
P

a P.a; bjx; y/ is independent of x, see Sect. 8.10.1.

8.6.2 Quantum Exam #2

The second kind of quantum exam is closer to standard exams. Alice and Bob
are simply requested to provide the same answer whenever they receive the same
question. This is clearly feasible: we all expect that good students give the same
answer to the same question. It suffices that they prepare for the exam well enough.
Note that the quantum exam #2 under consideration here is even easier than standard
exams, as there is no notion of correct or incorrect answers. All that is required is
that Alice and Bob give consistent answers: it suffices that they jointly decide in
advance which answer to give for each of the possible questions.

Now, a central problem: Could Alice and Bob succeed with certainty for such an
exam #2 by other means, that is without jointly deciding the answers in advance?
Think about it. If you found an alternative trick, then, if you are a student, you should
use your trick to pass the next examination: just apply your trick together with the
best student, you’ll get the same mark as him/her.5 And if you are a professor and
found a trick, then you should stop testing your student with standard exams! Well,
of course, there is no other trick, at least none applicable to classical students.

4Somewhat surprisingly, if there are only two possible questions, then there is a strategy such that
the probability that both players succeed is 50 %.
5Admittedly, the danger is that both student get the bad mark! But, on average, the poor student
improves.
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Correlations that satisfy P.a D bjx D y/ D 1 are necessarily of the form

P.a; bjx; y/ D
X

�

�.�/Q.ajx; �/Q.bjy; �/ (8.2)

for some probability function Q and some distribution � of common strategy �.
Historically, the � were called “local hidden variables”, computer scientist call them
“shared randomness”; here the � denote common strategies.
P.a D bjx D y/ D 1 is but one example of a local correlation, among infinitely

many others. Relation (8.2) characterizes all local correlations.
In summary, some exams require common strategies; in other words, some

observed correlations can’t be explained except by common causes.

8.6.3 Quantum Exam #3

The third kind of quantum exam is the most tricky and interesting. For (apparent)
simplicity let’s restrict the set of questions and answers to binary sets and let us label
them by bits, “0” and “1”. In this exam Alice and Bob are required to always output
the same answer, except when they both receive the question labelled “1” in which
case they should output different answers. Note that formally this exam requires
that Alice and Bob’s data satisfy the following equality, modulo 2: a C b D x � y.
This time it is not immediately obvious whether they can prepare a strategy that
guaranties success.

Assume first that the strategy forces Alice to output an answer that depends only
on her input x, i.e. Alice’s strategy is deterministic. But in such a case, whenever
Bob receives the question 1, he can’t decide on his output since it should depend on
Alice’s question. Next, if Alice’s output is random, this is clearly of no help to Bob.
Consequently there is no way for Alice and Bob to succeed with certainty.

Let us emphasize that successfully completing this exam does not necessarily
imply communication between Alice and Bob. Indeed, assume that, somehow, Alice
and Bob’s data would always satisfy a C b D x � y. Would this allow Alice to
communicate to Bob, or vice-versa? Well, it depends! If Alice’s output a is known
to Bob, for instance they decide on a D 0 always, then whenever Bob receives
y D 1, he can deduce Alice’s question from a C b D x � y and from his output:
x D b in the example. But if Alice’s outcome is unknown to Bob, for instance if
Alice outcome is merely a random bit, then the relation aC b D x � y is of no help
to Bob. We shall come back to this concept of a non-signaling correlation satisfying
aC b D x � y in Sect. 8.10.3.
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Let us define the mark M of this quantum exam #3 as the sum of the success
probabilities [14]:

M D P.a C b D xyjx D 0; y D 0/

CP.a C b D xyjx D 0; y D 1/

CP.a C b D xyjx D 1; y D 0/

CP.a C b D xyjx D 1; y D 1/ (8.3)

It is not difficult to realize that the optimal strategy for Alice and Bob consists in
deciding in advance on a common answer, independent of the questions they receive.
With such a strategy they are able to achieve the mark M D 3. This is indeed the
optimal mark achievable by common strategies:

M 	 3 (8.4)

This is an example of a Bell inequality: a constraint on correlations arising from
common strategies. Interesting Bell inequalities are those that can be violated by
quantum physics. In the case of (8.4), if Alice and Bob share entangled singlet
quantum states, then they can obtain the mark MQP D 2 C p

2  3:41. Tsirelson
proved that this is the highest mark achievable using quantum correlations [15].

Accordingly, quantum theory predicts that some tasks can be achieved that are
impossible with any local mechanical model, i.e. some exams are passed with higher
marks than classically possible. The fact that such tasks were invented for the pur-
pose of showing the superiority of quantum physics doesn’t affect the conclusion.
Still, it is only once some useful and natural tasks were found, concretizing the
superior power of quantum physics over all possible local strategies, that quantum
nonlocality became accepted by the physics community.6

8.7 Coin Tossing at a Distance

Another way to present nonlocality to non-physicist friends is the following.
Imagine two hypothetical players that toss coins. The players are separated in space
and toss their coin once per minute. They use their free-will to decide, for each toss,
whether to use their right hand or their left hand, independently of each other. And

6I wish someone establishes the statistics of the occurrences of the words “Bell inequality” and
“nonlocality” in Physical Review Letters. I bet that a phase transition happen in the early 1990s,
after Ekert’s paper on quantum cryptography, see [16]. In 1998 I started a PRL with the sentence
[11]: “Quantum theory is nonlocal.” and got considerable reactions to what was felt as a provocative
statement; today the same statement can be found in many papers, not provoking any reaction.
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they mark all results (time, hand and head/tail) in a big black laboratory notebook,
see Fig. 8.1.

After thousands of tosses, they get bored. Especially, given that nothing inter-
esting happens: for each of the two players, heads and tails occur with a frequency
of 50 %, independently of which hand they use. Hence, the players decide to go
for a beer. There, in the bar, they compare their notes and get very excited. Indeed,
quickly they notice that whenever at least one of them happened to have chosen his
right hand for tossing his coin, both players always obtained the same result: either
both head or both tails. But whenever, by mere chance, they both chose the left hand,
then they always obtained opposite results: head/tail or tail/head. A very remarkable
correlation!

The observation of correlations and the development of theoretical models
explaining them is the essence of the scientific method. This is true not only in
physics, but also in all other sciences, like geology and medicine for instance. John
Bell used to say “correlations cry out for explanations!” [17].

So, why are our two players that excited by the correlation they observe? Note
that locally, nothing interesting happens; in particular there is no way for one player
to infer from his data which hand the other player chose. Even if one player decides
to always use the same hand, this has no effect on the statistics observed by his
colleague. Consequently, this game and the observed correlation do not imply any
signaling. So, why do we feel that this is impossible? Actually, frankly, I do not
know!

Classical correlations are always explained by either of two kinds of causes. The
first kind is “signaling”, one player somehow informs or influences the other player.
This is clearly not the case here, since we assumed the players were widely separated
in space (for the physicists we may add “space-like separated”). The second kind of
causes for classical correlations is a common cause. For example all hockey players
simultaneously stop running, because the umpire whistled. This kind of cause is
precisely equivalent to the assumption of a common strategy, as formalized by (8.2)
and excluded for the present correlation by Bell’s inequality (8.4). Consequently,
the correlation observed by our two players is of a different nature. The big surprise
is that some sort of cause beyond the two classical causes for correlation exists!
This is what Einstein and many others had a hard time to believe. But, today, if
one accepts this as a matter of theoretical prediction and experimental confirmation,
then the next big question is “why can’t the correlation observed by our hypothetical
players not be observed in the real world?”. Indeed, quantum physics (and tensor
products of Hilbert spaces) tell us that Bell’s inequality (8.4) can be violated, i.e.
not all quantum correlations can be explained by one of the two kinds of classical
causes for correlations, but quantum physics does not allow correlations as strong
as observed by our hypothetical players. Still, this game is illustrative of quantum
nonlocality, as we shall elaborate in Sect. 8.10
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8.8 Experiments: God Does Play Dice, He Even Plays
with Nonlocal Dice

Physics is an experimental science and experiments have again and again supported
the nonlocal predictions of quantum theory. All kind of experiments have been
performed, in laboratories [18] and outside [11, 12, 19], with photons and with
massive particles [20–22], with independent observers to close the locality loophole
[11, 12, 19, 23, 24], with quasi-perfect detectors [20, 25, 26] to close the detection
loophole, with high precision timing to bound the speed of hypothetical hidden
communication [27–31], with moving observers to test alternative models [32]
(multi-simultaneity [33] and Bohm’s pilot wave [34]).7 All these results proclaim
loudly: God plays dice. Note how ironic the situation is: the conclusion “God
plays dice” is imposed on us by the experimental evidence supporting quantum
nonlocality and by Einstein’s postulate that no information can travel faster than
light. Indeed, as mentioned in Sect. 8.6.3, a violation of (8.4) with deterministic
outputs leads to signaling. Consequently, the experimental violation of (8.4) and the
no-signaling principle imply randomness [35–37].

Actually, the situation is even more interesting: Not only does God play dice,
but he plays with nonlocal dice! The same randomness manifests itself at several
locations, approximating aC b  x � y better than possible with any local classical
physics model.

A very small minority of physicists still refuse to accept quantum nonlocality.
They ask (sometimes with anger) How can these two space-time locations, out
there, know about what happens in each other without any sort of communication?
I believe that this is an excellent question! I have slept with it for years [38] (at last,
we found the answer, see [31]). I summarize my conclusion in the next section.

8.9 Entanglement as a Cause of Correlation

Quantum physics predicts the existence of a totally new kind of correlation that
will never have any kind of mechanical explanation. And experiments confirm this:
Nature is able to produce the same randomness at several locations, possibly space-
like separated. The standard explanation is “entanglement”, but this is just a word,
with a precise technical definition [39, 40]. Still words are useful to name objects
and concepts. However, it remains to understand the concept. Entanglement is a new
explanation for correlations. Quantum correlations simply happen, as other things

7The conclusion that follows from all these experiments is so important for the physicist’s world-
view, that an experiment closing simultaneously both the locality and the detection loophole is
greatly needed.
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happen (fire burns, hitting a wall hurts, etc). Entanglement appears at the same
conceptual level as local causes and effects. It is a primitive concept, not reducible to
local causes and effects. Entanglement describes correlations without correlata [41]
in a holistic view [42]. In other worlds, a quantum correlation is not a correlation
between two events, but a single event that manifests itself at two locations.

Are you satisfied with my explanation of what entanglement is? Well, I am not
entirely! But what is clear is that entanglement exists. Moreover, entanglement
is incredible robust! The last point might come as a surprise, since it is still
often claimed that entanglement is as elusive as a dream: as soon as you try
to talk about it, it evaporates! Historically this was part of the suspicion that
entanglement was not really real, nothing more than some exotic particles that live
for merely a tiny fraction of a second. But today we see a growing number of
remarkable experiments mastering entanglement. Entanglement over long distances
[11–13, 19, 43], entanglement between many photons [44] and many ions [45],
entanglement of an ion and a photon [46, 47], entanglement of mesoscopic systems
(more precisely entanglement between a few collective modes carried by many
particles) [48–52], entanglement swapping [53–55], the transfer of entanglement
between different carriers [56], etc.

In summary: entanglement exists and is going to affect future technology. It is
a radically new concept, requiring new words and a new conceptual category. And
the time since this was first written amply confirmed the robustness and power of
entanglement.

8.10 From Quantum Nonlocality to Mere Nonlocality

So far we have seen that quantum physics produces nonlocal correlations. And
so what? Ok, this can be used for Quantum Key Distribution and other Quantum
Information processes, but that doesn’t help much to understand non-locality.
Conceptually, one would like to study non-locality without all the quantum physics
infrastructure: Hilbert spaces, observables and tensor products. Not too surprisingly,
once the existence of non-locality was accepted, the conceptual tools to study it
came very naturally. Actually, the tools were already there, in the mathematics [57]
and even the physics [35, 36] literature, waiting for a community to wake up! The
basic tool is simple, doesn’t require any knowledge of quantum physics and allows
one, so to say, to study quantum nonlocality “from the outside”, i.e. from outside
the quantum physics infrastructure.

Let us go back to the quantum exam #3 (Sect. 8.6.3). Assume that Alice and
Bob are not restricted by quantum physics, but only restricted by no-signaling.
Consequently, they would fail the quantum exam #1. But under this mild no-
signaling condition they could perfectly succeed in the quantum exam #3: Alice and
Bob would each output a bit which locally looks perfectly random and independent



206 N. Gisin

from their inputs—hence there would be no signaling—yet their 2 bits would satisfy
a C b D x � y, exactly as in the coin tossing game of Sect. 8.7. The hypothetical
“machine” that produces precisely this correlation is a basic example of the kind of
conceptual tools we need to study nonlocality without quantum physics. Formally,
the correlation function is defined by:

P.a; bjx; y/ D 1

2
ı.aC b D x � y/ (8.5)

where the ı.z1 D z2/ function takes value 1 for z1 D z2 (modulo 2) and value 0
otherwise.

The correlation (8.5) is often referred to as a PR-box, to recall the seminal work
by Popescu and Rohrlich [35, 36], or as a NL-machine (a Non-Local machine8).
The idea of these terminologies is to emphasize the similarities between quantum
measurements on two maximally entangled qubits and the correlation (8.5): in both
cases the outcome is available as soon as the corresponding input is given (Alice
knows a as soon as she inputs x into her part of the machine and similarly Bob
knows b as soon as he inputs y, there is no need to wait for the other’s input) and in
both the quantum and the PR-box cases the “machine” can’t be used more than once
(once Alice has input x, she can’t change her mind and give another input). Notice
a third nice analogy, neither the quantum nor the NL machines allow for signaling.
Indeed, in all cases the marginals are pure noise, independently of any input.

Note that quantum physics is unable to produce the PR correlation (8.5). Indeed,
this correlation violates the Bell inequality (8.4) up to its algebraic maximum,M D
4, while Tsirelson’s theorem [15] states that quantum correlations are restricted
to M 	 2 C p

2. However, the correlation (8.5) is much simpler than quantum
correlations, while sharing many of their essential features. In particular (8.5) is
nonlocal but non-signaling.

In order to get some deeper understanding of the power of this hypothetical
machine (8.5) as a conceptual tool, let us consider three properties of quantum
correlations (many further nice aspects can be found in [59–61]). First we shall
consider the so-called quantum no-cloning theorem and see that it is actually
not a quantum theorem, but a no-signaling theorem. The next natural step is to
analyze quantum cryptography, whose security is often said to be based on the no-
cloning theorem, and as we would expect by now, we shall find “non-signaling
cryptography”. Finally, we consider the question of the communication cost to
simulate maximal quantum correlation. But before all this we need to recall some
facts about non-signaling correlations.

8A “machine” is a physicists’s terminology for an input-output black-box that is not necessarily
mechanical. I believe that this terminology appeared in the quantum physics context with the
“optimal cloning machines” introduced by Bužek and Hillery [58].
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8.10.1 The Set of Non-signaling Correlations

Let us consider the set of all possible bi-partite correlations P.a; bjx; y/, where the
inputs are taken from finite alphabets fxg and fyg and similarly for the outputs fag
and fbg, and which are non-signaling9:

X

b

P.a; bjx; y/ D P.ajx/ is independent of y (8.6)

X

a

P.a; bjx; y/ D P.bjy/ is independent of x (8.7)

A priori this set looks huge. But it has a nice structure. First, it is a convex set: convex
combinations of non-signaling correlations are still non-signaling. Second, there
are only a finite number of extremal points (mathematician call such sets polytopes
and the extremal point vertices); accordingly every non-signaling correlation can be
decomposed into a (not necessarily unique) convex combination of extremal points.
This is analog to quantum mixed states that can be decomposed into convex mixtures
of pure states.

Among the non-signaling correlations are the local ones, i.e. those of the
form (8.2), analog to separable quantum states. The set of local correlations also
forms a polytope, a sub-polytope of the non-signaling one. Moreover all vertices of
the local polytope are also vertices of the non-signaling polytope, see Fig. 2 [60].
The facets of the local polytope are in one-to-one correspondence with all tight Bell
inequality.

Let us illustrate this for the simple binary case (which is in any case the only one
we need in this article), i.e. a; b; x; y are 4 bits. In this case, it is known that there
are only eight non-trivial Bell inequalities (i.e. not counting the trivial inequalities
of the form P.a; bjx; y/ � 0), i.e. only eight relevant facets of the local polytope.
Interestingly, Barret and co-workers [60] demonstrated that the non-signaling
polytope has only eight vertices more than the local polytope, exactly one per Bell
inequality! Each of these eight vertices is equivalent to the PR correlation (8.5), up to
an elementary symmetry (flip an input and/or an output). Although these polytopes
live in an eight-dimensional space,10 their essential properties can be recalled from
the simple geometry of Fig. 8.2.

9Actually, there are at least three different concepts behind this word [62]. (1) There is the
mathematical definition given here. (2) No faster than light communication—though light plays
no special role in quantum physics. And (3), there is no-signalling as Newton thought of it: no
communication without a physical carrier of the information.
10More precisely, 8 is the dimension of the space of non-signaling correlations [63].
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Fig. 8.2 Geometrical view of the set of correlations. The bottom part represents the convex set
(polytope) of local correlations, with the upper facet corresponding to the Bell inequality (8.4).
The upper triangle corresponds to the non-local non-signaling correlations that violate the Bell
inequality. The smooth thin curve limits the correlations achievable by quantum physics. The top
of the triangle corresponds to the unique non-signaling vertex above this Bell inequality, i.e. to the
non-local PR machine (8.5). The thin vertical line represents the isotropic correlations (8.8) with
the indication of some of the values of pNL

8.10.2 No-Cloning Theorem

Details can be found in [59], as here we would merely like to present the intuition.
Let us assume that Alice (input and output bits x and a, respectively) shares the
correlation (8.5) both with Bob (bits y and b) and with Charly (bits z and c): aCb D
xy and a C c D xz. Note that this situation is different from the case where Alice
would share one “machine” with Bob and share another independent “machine”
with Charly: in the situation under investigation Alice holds a single input bit x and
a single output bit a. We shall see that the assumption that Alice’s input and output
bits x and a are correlated both to Bob and to Charly leads to signaling. Hence in
a Universe without signaling, Alice can’t share the correlation (8.5) with more than
one partner: the correlation can’t be cloned.

In order to understand this, assume that Bob and Charly come together, input
y D 1 and z D 0, and add their output bits b C c. According to the assumed
correlations and using the modulo 2 arithmetic a C a D 0, one gets: b C c D
a C b C a C c D xy C xz D x. Hence, they could determine from their data that
Alice’s input bit is x, i.e. Alice could signal to them!

A natural question is how noisy should the correlation (8.5) be to allow cloning?
The answer is interesting: as long as the Alice–Bob correlation violates the Bell
inequality (8.4), the Alice-Charly correlation can’t violate it; if not there is signaling.

We have just seen that the CHSH-Bell inequality (8.4) is monogamous, like well
kept secrets. Let’s now see that this is not a coincidence!
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8.10.3 Non-signaling Cryptography

In 1991 Artur Ekert’s discovery of quantum cryptography [9] based on the violation
of Bell’s inequality changed the (physicist’s) world: entanglement and quantum
nonlocality became respectable. Now, as we shall see in this subsection, the essence
of the security of quantum cryptography does not come from the Hilbert space
structure of quantum physics (i.e. not from entanglement), but is due to no-signaling
nonlocal correlation! The fact that quantum physics offers a way to realize such
correlation makes the idea practical. However, if one would find any other way to
establish such no-signaling nonlocal correlations (a way totally unknown today),
then this would equally well serve as a mean to establish cryptographic keys [64–
66].

Let us emphasize that the goal is to assume no restriction on the adversary’s
power, i.e. on Eve, except no-signaling11 (for an independent but related work see:
[67]). Obviously, if one assumes additional restrictions on Eve, like restricting her
to quantum physics, then Alice and Bob can distill more secret bits from their data
[68]. But qualitatively, the situation would remain unchanged.

Assume that two partners, Alice and Bob, hold devices that allow them to each
input a bit (make a binary choice of what to do, e.g. which experiment to perform)
and each receives an output bit (e.g. a measurement result). This can be cast into
the form of an arbitrary correlation: P.a; bjx; y/, with a; b; x; y four bits. Assume
furthermore that the devices held by Alice and Bob do not allow signaling. This
simple and very natural assumption suffices to give a nice structure to the set
of correlations P.a; bjx; y/: as we recall in Sect. 8.10.1 this set is convex and
has a finite number of extreme points, called vertices. The nice property is that
any correlation P.a; bjx; y/ can be decomposed into a convex combination of
vertices, hence once one knows the vertices one knows essentially everything. If
the correlation is local, i.e. of the form (8.2), then it is not useful for cryptography;
indeed the adversary Eve may know the strategy �. Hence, let’s assume that
P.a; bjx; y/ violates the Bell inequality (8.4). Consequently P.a; bjx; y/ lies in a
well defined corner of the general polytope, a sub-polytope. Barrett and co-workers
found that this sub-polytope has only nine vertices [60], eight local ones for which
M D 3 and only one nonlocal vertex, that corresponding to our conceptual tool, i.e.
to a C b D xy, for which M D 4, see Fig. 8.2.

In the case that Alice and Bob are maximally correlated (maximally but non-
signaling!), i.e. their correlation correspond to the nonlocal vertex of Fig. 8.2, it
is intuitively clear that the adversary Eve can’t be correlated neither to Alice, nor
to Bob, by the no-cloning argument sketched in the previous subsection. Hence,
in such a case Alice and Bob receive from their apparatuses perfectly secret bits.

11No-signaling should be understood here as in the previous sub-section on the no-cloning theorem.
That is, even if two parties joint, for example Eve and Bob come together, then they should not be
able to infer any information about the third party’s input, e.g. Eve and Bob should not have access
no Alice’s input.
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However, these bits are not always correlated: when x D y D 1 they are anti-
correlated. But this can be easily fixed by the following protocol. After Alice and
Bob received their output bits, Alice announces publicly her input bit x and Bob
changes his output bit to b0 D b C xy. Now Alice and Bob are perfectly correlated
and Eve still knows nothing about a and b0.

Consider now that Alice and Bob are non maximally correlated:

P.a; bjx; y/ D 1C pNL

2

1

2
ı.aC b D x � y/C 1 � pNL

2

1

4
(8.8)

For pNL > 0 this correlation violates the inequality (8.4), for pNL 	 p
2 � 1, it can

be realized by quantum physics. Can Alice and Bob exploit such a correlation for
cryptographic usage secure against an arbitrary adversary who is not restricted by
quantum physics, but only restricted by the no-signaling physics? The full answer
to this fascinating question is still unknown. However, there is an optimistic answer
if one assumes that Eve attacks each realization independently of the others, the
so-called individual attacks. In such a case, one may assume that Eve does actually
distribute the apparatuses to Alice and Bob. Some apparatuses are ordinary local
ones, for these Eve knows exactly the relation between the input and output bits,
both for Alice and for Bob. For example, Eve sends to Alice an apparatus that
always outputs a 0, and to Bob an apparatus that outputs the input bit: b D y.
In this example Eve knows Alice’s bit a, but doesn’t know Bob’s bit. For some local
pairs of apparatuses Eve knows both a and b, or b but not a. But, if the Alice–Bob
correlation (8.8) violates the Bell inequality (8.4), i.e. if pNL > 0, then Eve must
sometimes send to Alice and Bob the apparatuses that produce the maximal nonlocal
correlation a C b D xy,12 in which case she knows nothing about Alice and Bob’s
output bits a and b. A detailed analysis can be found in [65]. Here we merely recall
the result. For pNL > 0:318 the Shannon mutual information between Alice and Bob
is larger than the Eve-Bob mutual information [65]. Hence for pNL > 0:318 Alice
and Bob can distil a cryptographic secret key out of their data, secure even against
an hypothetical post-quantum adversary, provided this adversary is still subject to
no-signaling.

Actually, in [65] we worked out a 2-way protocol for key distillation valid down
to pNL > 0:09. There, it is also proven that the intrinsic information is positive for all
positive pNL. It is thus tempting to conjecture that secret key distillation is possible
if and only if the Bell inequality is violated.13

12One may think that Eve should sometimes send a weakly non-local machine. But all such
correlations are convex combinations of local and fully non-local NL-machines. Hence, it is
equivalent for Eve to always send either a local or a NL-machine, with appropriate probabilities.
13In [59] we proved that a correlation P.a; bjx; y/ is nonlocal iff any possible non-signaling
extensions P.a; b; ejx; y; z/ has positive Alice–Bob condition mutual information, conditioned
on Eve, I.A; BjE/, i.e. has positive intrinsic information. This nicely complements the similar
result that holds for entangled quantum states and purifications [69]. In [65] we proved that the
same relation between nonlocality and positive intrinsic information does also hold when Alice
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Another beautiful result is the observation of an information gain versus distur-
bance relationship, very similar to that of quantum physics, based on Heisenberg’s
uncertainty relations (Scarani, Private communication). Let us analyze separately
the cases where Alice announces x D 0 and x D 1, and denote the respective
Alice–Bob error rates QBERx and the Eve-Bob mutual informations Ix.B;E/,
i.e. QBERx D P

y P.a ¤ b/jx; y/ and Ix.B;E/ D H.Bjx/ � H.BjE; x/.
Remarkably, I0.B;E/ is a function of only QBER1 and I1.B;E/ of QBER0

14:
information gain for one input necessarily produces errors for the other input, in
analogy with the quantum case where information gain on basis necessarily perturbs
information encoded in a conjugated basis!

To conclude this subsection, let us emphasize that the distribution of the
correlation (8.8) by quantum means requires a protocol that differs from the famous
BB84 protocol [70]. Indeed, the data obtained by Alice and Bob following the BB84
protocol do not violate any Bell inequality, hence the BB84 protocol is not secure
against a non-signaling post-quantum adversary. Indeed, even the noise-free BB84
data can be obtained from quantum measurements on a separable state in higher
dimension. The additional dimension could, for the example of polarization coding,
be side-channels due to accidental additional wavelength coding. Consequently,
standard security proofs [71, 72] must make assumptions about the dimension of the
relevant Hilbert spaces (accordingly, no security proof of quantum key distribution
is unconditional, contrary to widespread claims). But it is easy to adapt the BB84
protocol, it suffices that Alice measures the physical quantities corresponding to
the Pauli matrices �z or �x , depending on her input bit value 0 or 1, respectively,
exactly as in BB84, and Bob measures in the diagonal bases: �C45o and ��45o for
y D 0 and y D 1, respectively. In this way Alice and Bob’s data are never perfectly
correlated, but they can violate the Bell inequality and be thus exploited to distil a
secret key valid even against post-quantum adversaries. Note that the violation of a
Bell inequality guarantees that no side channels accidentally leak out information.
Furthermore, in this protocol, that we like to call the CHSH-protocol, in honor of the
four inventors [14] of the most useful Bell inequality (actually equivalent to (8.4)),
Alice announces her input bit x, i.e. her basis as in BB84, but Bob doesn’t speak,
he always accepts and merely flips his bit in case x D y D 1. In summary, in the
CHSH protocol Alice and Bob use all the raw bits, however their data are initially
noisier than in the BB84 protocol.

announces her input and Bob adapts his output in such a way as to maximize his mutual information
with Alice. Proving this in full generality would be a marvelous result.
14Precisely one has: I0.B;E/D 2 � QBER1 and I1.B;E/ D 2 � QBER0.
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8.10.4 Cost of Simulating Quantum Correlations

Among the many contributions of computer science to quantum information is
the beautifully simple question (actually anticipated by Maudlin [73]): what is the
cost of simulating quantum correlations? More precisely, Gilles Brassard, Richard
Cleve and their student Alain Tapp [74], and independently Michael Steiner [75],
asked the question: How many bits must Alice and Bob exchange in order to
simulate (projective) measurement outcomes performed on quantum systems? The
question concerns the communication during the measurement simulation, clearly
there must have been prior agreement on a common strategy. If the systems are in
a separable state, no communication at all is needed. On the contrary, if the state
allows measurements that violate a Bell inequality, i.e. if the state has quantum
nonlocality, then it is impossible to simulate it without some communication or
some other nonlocal resources.

For the simplest case of two 2-level systems (2 qubits), this game assumes that
Alice and Bob receive as input any possible observable, i.e. any vector Ea and Eb on
the Poincaré sphere. And they should output one bit, corresponding to the binary
measurement outcome “up” or “down” in the physicist’s spin 1

2
language. A simple

way to simulate the quantum measurements is that Alice communicates her input Ea
to Bob and outputs a predetermined bit (predetermined by Alice and Bob’s common
strategy). But communicating a vector corresponds to infinitely many bits! My first
intuition was that there is no way to do any better, after all the input space is a
continuum, quite the contrary to the case of Bell inequalities where the input space
is finite, usually even limited to a binary choice. Yet, Brassard and co-workers
came out with a model using only 8 bits of communication! What a surprise: is
entanglement that cheap? But this was only a start. Steiner published a model valid
only for vectors lying on the equator of the sphere, but this model was easy to
generalize to the entire sphere [76]: it uses only 2 bits! 2 bits, like in dense coding
and teleportation: that should be the end, I thought! But, yet again, I was wrong.
Bacon and Toner produced a model using one single bit of communication [77].
Well, by now we should be at the limit, isn’t it? But actually, not quite!

Let’s come back to the real central question: How does Nature manage to produce
random data at space-like separated locations that can’t be explained by common
causes? The idea that Nature might be exploiting some hidden communication
(hidden to us, humans) is interesting. With my group at Geneva University we spent
quite some time trying to explore this idea, both experimentally and theoretically.
We could set experimental bounds of the speed of this hypothetical hidden
communication [27–31]. We also investigated the idea that each observer sends out
hidden information about his result at arbitrary large speeds as defined in its own
inertial reference frame [32]. The measured bounds on the speed of the hypothetical
hidden communication were very high and the latter assumption contradicted by
experiments. Also our theoretical investigation cast serious doubts on the existence
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of hidden communication. Analyzing scenarios involving three parties we could
prove that if all quantum correlations would be due to hidden communication, then
one should be able to signal (i.e. the hidden communication do not remain hidden)
[78, 79]! Hence, the only remaining alternative is that Nature exploits both hidden
communication and hidden variables: each one separately contradicts quantum
theory, but both together could explain quantum physics. However, recently, we
could prove all such models impossible [31]. Hence, let’s face the situation: Nature
is able to produce nonlocal data without any sort of communication. But is she doing
so using all the quantum physics artillery? Aren’t there logical building blocks of
nonlocality? A partial answer follows.

Let us come back to the problem of simulating quantum measurements, but
instead of a few bits of communication let us give Alice and Bob a weaker resource:
one instance of the nonlocal machine a C b D xy. That this is indeed a weaker
resource follows from the observation that the correlation a C b D xy can’t
be used to communicate any bit, but that by sending a single bit one can easily
simulate the nonlocal correlation (since Alice’s input is only a bit x, it suffices that
she communicates it to Bob). The nice surprise is that this elementary resource
is sufficient to simulate any pair of projective measurements on any maximally
entangled state of two qubits! For the proof the reader is referred to the original
article [80] and to the beautiful account in [81] where the relations between all
these models are presented.

The above results are very encouraging. One can get the feeling that, at last, one
can start understanding nonlocality without the Hilbert space machinery, that, at last,
one can study quantum physics from the outside, i.e. from the perspective of future
physical theories (assuming these will keep Einstein’s no-signaling constraint) and
no longer from the perspective of the old classical mechanical physics. But there
is still a lot to be done! For instance, it is surprising (and annoying in my opinion)
that one is still unable to simulate measurement on partially entangled states using
the nonlocal correlation (actually we could prove that this is impossible with a
single instance of the NL-machine, but there is hope that one can simulate partially
entangled qubit pairs with two instances [82], see also [83]). Let me emphasize that
all of today’s known simulation models for partially entangled qubits include some
sort of communication15 [77], let’s say from Alice to Bob. Consequently, in all these
models Bob can’t output his results before Alice was given her input. This contrasts
with the situation in quantum measurements where Bob doesn’t need to wait for
Alice (he does not even need to know about the existence of Alice) and with the
simulation model for maximally entangled qubits using the PR-box. It would be
astonishing if partially entangled state could not be simulated in a time-symmetric
way (For another recent results sustaining the conjecture the partially entangled state
are more nonlocal than maximally entangled states see: [85]).

15Using the reduction of an OT-box (Oblivious Transfer to a PR-box) [84] one can simulate any
2-qubit state with one OT-box.
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8.11 Conclusion

The history of non-locality in physics is fascinating. It goes back to Newton
(Sect. 8.2). It first accelerated around 1935 with Einstein’s EPR and Schrödinger
cat’s papers. Next, it slowly evolved, with the works of John Bell, John Clauser and
Alain Aspect among many others, from a mere philosophical debate to an exper-
imental physics question, or even to experimental metaphysics as Abner Shimony
nicely put it [86]. Now, during the last decade, it has run at full speed. Conceptually
the two major breakthroughs were, first Artur Ekert’s 1991 PRL which strongly
suggests a deep link between non-locality and cryptography, Sect. 8.10.3. The
second breakthrough, in my opinion, is the PR-box, Sect. 8.10.1, the understanding
that non-signaling correlations can be analyzed for themselves, without the need
of the usual Hilbert space artillery, thus providing a simple conceptual tool for
the unravelling of quantum non-locality [N. Gisin Quantum chance, Nonlocality,
Teleportation and Other Quantum Marvels, Springer 2014]. We have reviewed
that the no-cloning theorem, the uncertainty relation, the monogamy of extreme
correlation and the security of key distribution, all properties usually associated to
quantum physics are actually properties of any theory without signaling, Sect. 8.10.
In particular we emphasized that the second breakthrough, the PR-box, allows one
to confirm the first breakthrough: there is an intimate connection between violation
of a Bell inequality and security of quantum cryptography.

And relativity, can it be considered complete? Well, if nonlocality is really real,
as widely supported by the accounts summaries in this article, then all complete
theories should have a place for it. Hence, the question is: “Does relativity hold a
place for non-signaling nonlocal correlations?”.
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Chapter 9
Faces of Quantum Physics

Rudolf Haag

Preface

We review conceptual structures met in quantum physics and note changes of basic
concepts and language partly due to a maturing process in the 80 odd years since
their first evocation by the founding fathers in Copenhagen, partly demanded or
suggested by the passage from quantum mechanics to relativistic quantum field
theory, local quantum physics and high energy experiments. It is in particular the
concept of “observable” which lost its central role as a description of the measure-
ment of some hypothetical property of a “physical system” under investigation and
shifted to an auxiliary position as referring to a detector whose signals serve for the
reconstruction of a history described in equations like (9.6), (9.7). The primary role
is taken over by the notion of a (microscopic) event constituting the bridge to reality
and to finer features of space-time.

9.1 Introduction

Do you understand quantum theory? Confronted with this blunt question I can
neither say yes nor no. Since my student days I was fascinated by it and struggled
with it. Sixty years ago, in 1953, I had the good fortune to spend a year in
Copenhagen. Niels Bohr, then 70 years old, had retired from the activities of the
institute but I did get a chance for a lengthy discussion with him due to the fact
that I had been assistant to Fritz Bopp, who had tried for years to improve the
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interpretation of quantum mechanics and had sent several preprints to Niels Bohr
who could not understand their motivation at all. Today I regret and am somewhat
ashamed of my behaviour in this encounter with the great man, the principal
architect of the first coherent theory of quantum mechanics called the Copenhagen
interpretation. With the self assurance of a young post doc who had read the book
by J. von Neumann on the mathematical foundations of quantum mechanics I came
with the prejudice that Bohr’s explanations were too vague. So I understood nothing
of his speech, nor the meaning of his parting words: “Of course you can change
the mathematics but that changes nothing in the essence of what we learned.” It
took me many years till I understood some of Bohr’s insights. The essence for
him was “complementarity”, felt as a deep and general principle governing all
scientific effort. It asserts that in our attempts to describe nature we have to employ
symbols and pictures which can never give a full view. To any such choice there
is a complementary one illuminating some other aspect. Prime examples are the
uncertainty relations between canonically conjugate variables. Another example is
the alternative description of matter in terms of particles or waves. An extreme
example is the proclaimed complementarity between space-time and causality. We
shall return to this later. Niels Bohr distrusted the reliance on a single chain of linear
logical reasoning. One of his favorite lines of poetry was:

Nur die Fülle führt zur Klarheit,
und im Abgrund wohnt die Wahrheit. [1]

I do not dare to translate this.
In the physics community the uncertainty relations and complementarity left

in their wake an insecurity about the ground on which we stand. This insecurity
is still there as witnessed by the heading: “Mysteries, puzzles and paradoxes in
quantum mechanics” chosen as title of a series of high class workshops at Gargnano,
Italy, 70 years after the birth of quantum mechanics. There, recent experiments
in atomic physics and quantum optics, made possible by an incredible advance in
experimental techniques, were presented. Some mystery may remain unexplainable
but puzzles can be solved and paradoxes lifted. To gain some firm ground on which
to stand let me first try to clarify some points of departure and terminology.

9.2 Reality, Individuality, Phenomena

9.2.1 Reality

In daily life we mostly take it as evident that we are tiny parts of a huge world which
is largely independent of our wishes and perceptions and we regard the impressions
in our consciousness as images of parts of this outside world. We do not reflect
about the relation of this world to the part we call “I”. Experimental physicists have
to regard their efforts as a dialogue with a sometimes hostile outside world called
nature and the individual observed phenomena as “facts”, i.e. irreversible elements
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of reality, where “nature” and “reality” are essentially synonymous. This outside
world is felt to be distinct from the human mind, obeying laws independent of our
will. This corresponds to a dualistic picture of the universe, with two co-existing
parts: human consciousness and will on one side, nature on the other. The question
about the relation between these two parts, known as the “mind-body-problem”, has
been a topic in philosophy for ages. Attempts at unification by eliminating one of
the two sides led to the two extreme positions of idealism and materialism.

The advent of quantum mechanics suggested that physics could tip the balance in
this dispute in favor of a primacy of the mind. In particular there is the discrepancy
between the deterministic development of wave functions by the Schrödinger
equation and the statistical nature of all predictions. J. von Neumann observed
that the Schrödinger equation alone could not explain the gain of knowledge by
experiments. The process would never end unless the observer decides to end it due
to his consciousness. Schrödinger illustrated this by his drastic story of the poisoned
cat, who is neither dead nor alive. For such reasons the standard interpretation had
withdrawn to the safe position that the task of the theory is fulfilled if it is able to
predict the results of experiments. I have always felt that this is too modest a view
and does not do justice to the motivation of physicists who hoped to learn about the
working of nature.

The reality issue received a new impulse by the observation of persistent long
range entanglement and the violation of Bell’s inequality. It kindled many debates
as to whether reality or locality have to be sacrificed. B. D’Espagnat discussed the
pro and contra for the assumption of a “mind-independent reality” [2].

In spite of all this, I maintain that physics cannot contribute to the solution of the
mind-body-problem. For the purpose of physics it is not relevant to which ideology
(if any) one adheres. The experimentalist is safeguarded against becoming the prey
of illusions by the extremely stringent requirements for accepting a phenomenon
as real. It needs the agreement with many other observers, possibly attainable
by documentation; it needs reproducibility by independent work elsewhere. The
essential criterion for accepting an element of consciousness as the cognition of
a counterpart in reality is the consensus between many observers, which lifts the
impression from one individual consciousness to a collective one. If this is satisfied,
the agreement of all people concerned is adequate for treating the said observation
“as if” it were an element of an outside world.

The theory is in another situation. If it transcends pure phenomenology it is a
creation of the human mind. Not all of its concepts and pictures need to have a
counterpart in reality. Since a consensus can only be reached about coarse features
of phenomena there remains an open end for extrapolations whose merits can only
be judged with criteria like fruitfulness, simplicity, naturalness.

9.2.2 Individuality, Division

Any gain of knowledge starts by the distinction of different things: different objects,
phenomena, even words in a language, different individuals of any kind. Our
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ability to distinguish individual elements leads us to the concept of numbers, sets
and ultimately to the whole structure of mathematics. Physics begins with the
observation of individual phenomena and the perception of individual objects. The
projection of phenomena into nature we call “events”. The singling out of individual
elements demands a division of the world. The least objectionable way of doing
this starts from the consideration of simple hypothetical universes, allowed by the
theory, which could exist without anything else. Among these there are minimal
ones consisting of a single, lonely, stable particle. Here, the term “stable particle”
denotes anything which permanently stays together, be it an electron, an atom, a
molecule or even a piece of solid material.

In quantum physics the relation of a particle to space-time is somewhat subtle.
The lonely particle does not produce an event due to the lack of a partner. For
its perception we need a detector. The interaction of the particle with the detector
produces an event and this is localized in space-time. Prior to this event we cannot
assume any localization of the particle because there exist interference effects
described by the wave aspect of matter. They tell us that the same particle may
be partly here, partly there. But the property of “staying together” means that in a
battery of detectors the particle can excite at most one detector at any given time.
A particle, though it has no sharp position, is “permanently singly localized”, i.e. it
cannot produce any twofold equal time coincidences. This constitutes an operational
definition of the concept “particle” and is equivalent to the well known requirement
that it is a state with sharp mass value.

In pursuit of the old dream of understanding the variety of appearances in
terms of a few elements, the division process was carried further and further. The
explanation of the structure of matter in terms of electrons and nuclei, of nuclei in
terms of protons and neutrons, constitute the most spectacular triumph of quantum
mechanics. However, we must note that in these divisions the individuality of the
parts becomes blurred. It disappears already in the example of entangled 2-particle
states.

9.2.3 Phenomena, Events, Observation

In his contribution to the Einstein centennial symposium in Princeton 1979 John
Archibald Wheeler formulated two paradoxa which, taken together, might constitute
a clue for the next step in the progress of the theory. Unfortunately, I forgot one
of them, but the other one sounded: “No phenomenon is a phenomenon unless
it is observed.” I thought that he wanted to stress the customary doctrine that
quantum theory deals with laws governing the observation of nature as distinct
from properties of nature itself. So I asked him later what he meant with this
statement in view of the common belief that the evolution of stars preceded by a
wide margin the appearance of life and consciousness and that cosmologists use
quantum physics in the description of such processes. His answer “It has nothing
to do with the mind” surprised and satisfied me. However, there remained a need
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for interpretation. One might generalize the meaning of the term “observation”,
dissociating it from human consciousness and replacing it by the existence of a
document. Still, there remain many unobserved happenings needed as links between
or causes of genuinely observed phenomena. We may call them “unobserved
events”. Among their attributes must be some approximate localization in space
and time and irreversibility marking a transition between a factual past and an open
future in the relative present; a jump into reality from a possibility. If one wants,
one may evoke the picture of an entrance into a universal consciousness in nature.
This suggests the replacement of the picture of a universe existing from eternity to
eternity by the picture of an evolutionary universe [3–5].

9.3 Observables in Quantum Mechanics

9.3.1 Brief Sketch of the Formalism and Interpretation

Observables and states are the central concepts of quantum theory. In quantum
mechanics they both refer to a “physical system”, i.e. some part of the universe
singled out for study. It usually consists of a certain number of electrons and
nuclei interacting by Coulomb forces and they may be subjected to external fields
(electromagnetic or gravitational) described classically. The notion of photons
representing the quantum nature of electromagnetic radiation lies, strictly speaking,
outside the domain of non-relativistic quantum mechanics, but it is unavoidable and
freely used. Parts of nuclear physics in which the structure of nuclei is explained in
terms of mechanical forces between protons and neutrons may be included but will
not be considered here. In Quantum Field Theory the notion of “physical system” is
different. This demands some reconsideration of standard terminology.

The specific way of describing predictions in quantum mechanics arises from two
features. The first was formulated by Niels Bohr in the words: “We cannot assign
any conventional attributes to an atomic object.” The “conventional attributes”,
like position and momentum are replaced by “unconventional attributes”, called
“observables”, mathematically represented by self-adjoint operators in a Hilbert
space associated to the system. They are used to label the measuring procedures
to which the system may be subjected. Numerical attributes arise only after the
application of such a measuring procedure to an individual system. As measuring
results only spectral values of the corresponding self-adjoint operator can appear
and they should not be interpreted as properties of the system existing prior to
the measurement. They are created in the interaction process between measuring
instrument and system.1

1This aspect of the “Copenhagen interpretation” has been violently embattled, and is still not
accepted by some. However, it is inescapable if one is not prepared to sacrifice the mathematical
structure supported by many experiments, e.g. [6].
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The second feature is the lack of deterministic predictability. To ensure repro-
ducibility of findings it is necessary to consider ensembles of individual systems
which are (to the best of our knowledge) equally prepared. We must be satisfied
with statistical statements. The so called “state of the system” characterizes such
an ensemble. Its mathematical description is a positive operator in Hilbert space,
normalized to have unit trace. The probability assignments are derived from Born’s
rule. If the observableF is measured in the state � the probability for finding a result
within the spectral range� of F is

p D Tr�PF;� (9.1)

where Tr denotes the trace, and PF;� is the spectral projector of F for the range�.
Obviously, different ensembles may be thrown together in arbitrary proportions

to form a new resulting ensemble. This “mixing process” implies that the set of all
states of a system is a convex body within the set of all operators. For any subset
f�ig of states the convex combination

� D
X

�i�i I �i > 0I
X

�i D 1 (9.2)

is again a state. The convex body has extremal points, the “pure states” which
cannot be written as convex combinations of others. They are represented by one-
dimensional projectors. The salient feature of quantum physics is that the convex
body of states is not a simplex. This means that the decomposition of an impure
state into pure components, while always possible, is highly non-unique. In physical
terms the decomposition of a state into a convex combination corresponds to a
decomposition of the ensemble into subensembles. Therefore it is often not possible
or meaningful to assume that each individual system is in some pure state. The
assignment of a particular pure state to an individual system means only that this
system is filed as a member of a particular subensemble whose choice remains rather
arbitrary.

Several eminent scientists have expressed dissatisfaction with the scheme
sketched above. Albert Einstein could not make his peace with the indeterminacy
and lack of reference to reality. We shall return to this later. John Bell in his search
for an ontological description of the universe wanted to throw out the notion of
observables in favor of “beables” [7].

For a critical assessment of the standard terminology in quantum physics it is
useful to look at its origins and at the gradual shifting of emphasis.

9.3.2 Origins

The enormous amount of knowledge about atomic structure accumulated in the
quarter century preceding the advent of quantum mechanics is documented in the
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book by Sommerfeld [8]. Two features there should be mentioned because of their
decisive influence on subsequent development. First, the treatment of the orbital
motion of electrons by the canonical formalism governed by a Lagrange function
with the formulation of quantum conditions selecting the stable orbits. Secondly, the
formulas for the intensity of radiation due to a quantum jump from a higher level
Ei to a lower level Ek . In this, there occur doubly indexed quantities: an oscillator
strength fik and dipole moment dik obeying sum rules. This was the decisive cue
for Heisenberg leading him to “matrix mechanics” by postulating that all canonical
variables should be replaced by matrices whose kinematical relations are expressed
by matrix multiplication [9].

Quite different were the observations which led Schrödinger to his formulation
of wave mechanics. There was de Broglie’s relation between momentum and
wavelength supplementing Planck’s relation between energy and frequency; there
were the interference phenomena found by Davisson and Germer. Centuries earlier
such interference phenomena for light had led to the replacement of the corpuscular
picture of light by a wave theory.

In this analogy between optics and mechanics the light rays of geometric optics
in a medium correspond to the trajectories of a particle in mechanics. This allowed
Schrödinger to guess the form of a wave equation describing the propagation of
a particle in a potential. Its application to the discussion of atomic structure was
heralded by the title of his decisive paper: “Quantisierung als Eigenwertproblem”
[10]. For this, one additional idea was needed: the natural boundary conditions
at infinity expressed by the square integrability of wave functions. It introduced
the notion of Hilbert space into theoretical physics, which has become one of the
essential mathematical concepts in quantum physics. The quantities energy and
momentum of classical mechanics become operators acting in Hilbert space.

9.3.3 Discussion

The creators of matrix mechanics and wave mechanics had to consider only
a few basic observables: position, momentum, energy, angular momentum. But
in the development of a general, mathematically elegant theory it was assumed
that every self-adjoint operator in Hilbert space represents some observable. This
generalization is in itself harmless and useful.

It leads, however, to the often voiced pseudo-problem: “How can we construct a
measuring apparatus for a given self-adjoint operator?” and it may veil the central
point that all measurements in atomic physics ultimately end by the detection of an
event with its localization in space and time. The observed phenomena are dots
in a photographic emulsion, flashes on a scintillation screen, clicks of a Geiger
counter or signals from some other localized detector. The great variety of different
observables arises only due to the possibility of manipulating the system between
state preparation and ultimate detection. In the simplest but important case of the
manipulation by an external field this demands the solution of the Schrödinger
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equation which leads to a unitary transformation of the initial wave function. In
the measurement of a spin orientation we determine the position after the deflection
by a Stern-Gerlach magnet. A momentum measurement either uses the relation to a
mean velocity or one studies the contrast in an interference pattern after the passage
of the particle through a lattice. Of particular interest is the measurement of energy
levels of atoms. If we separate off the center of mass motion, the isolation of the
atom ensures that we shall find it in its ground state. An ensemble of such atoms is
automatically described by a pure state, namely the ground state; an isolated atom
is (almost) a “beable” as desired by John Bell. The level differences are typically
measured by absorption or emission of photons whose energy is determined by
the deflection in passing through a spectrometer. The ground state energy itself is
determined by studying the ionization process and measuring the momentum of a
projectile.

At this point, we should also consider the difference between measurement and
detection. The former leads to a measuring result giving a number belonging to the
spectrum of the observable. The latter registers a fact or, in the case of a battery
of detectors, it offers the choice between various mutually exclusive alternatives.
Mathematically, the former corresponds to the self-adjoint operator itself with its
spectrum, the latter to a set of orthogonal spectral projectors representable by the
Abelian algebra of functions of the observable. There is no natural numbering
for detector signals; this is different for preferred observables, like energy and
momentum, where such a natural numbering exists. Then, the bridge from the
position of the registered event to the spectral value has to be established.

9.3.4 Continuous Propagation, Discrete Events

Let us now discuss in some detail the simple but illuminating case: manipulation of
a single particle by a classically described external field. Here we see most clearly
the division of the process into two stages described and idealized in different ways.
First, the (relatively mild) interaction of the particle with the external field. This
is described by the Schrödinger equation leading to a unitary transformation of
the initial wave function. It is reversible and conserves coherence but by itself it
cannot produce any gain in knowledge. All possibilities remain open. Secondly, the
catastrophic interaction in the detector leading to an unresolved, irreversible fact.
One obvious difference distinguishing the interaction in the first stage from that
in the second is that an external field is by definition inert. It acts on the atomic
system but does not encounter any appreciable back reaction. Of course we cannot
expect that this idealization is perfect but typically it is well satisfied in countless
interference experiments with electrons, X-rays, slow neutrons. For interference
experiments with much heavier particles see [11]. Reversibility is demonstrated in
a so called “quantum eraser experiment” [12]. It shows conservation of coherence
in beam splitting, various polarization changes and recombination of beams. It is
important to stress here, that the quantum eraser cannot erase any facts. In the
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intermediate stage when a state is reached for which we can predict with certainty
the result of some specific measurement, there remains the essential difference
as to whether this measurement has or has not been performed. If the detection
process is not performed, the state remains in the coherent reversible stage. If it is
performed, an irreversible fact is created. Included in this list of coherent processes
may even be experiments in which an atomic beam is crossed by laser light forcing
the atoms to oscillate between the ground state and an excited state. After several
such encounters an interference between parts of the atomic beam having undergone
different histories can still be observed [13]. The reason in this case is that the
laser beam may be idealized as an external field. It contains almost infinitely many
photons so that absorption or emission of one photon has no effect on it. Still another
example is the technique of “parametric down conversion” by the passage of a
photon beam through a nonlinear crystal which splits one photon into a coherent
superposition of two photons with half energy. This has been extensively used in
entanglement experiments, which will be discussed later.

Let us turn now to the detection process. To fix the ideas, let us consider the
detection of a charged particle moving against a battery of detectors, say Geiger
counters. The transversal coherence length of the wave function of the particle shall
be far extended beyond the battery of detectors. The ensuing history can again be
divided into two stages. First, a microscopic, triggering event, here the ionization of
some molecule in one of the detectors. It is followed by a chain reaction in which
an exponentially growing avalanche of secondary ionization processes develops,
so that a signal perceptible by our senses results. The customary description of
the formation of the avalanche is also given in terms of individual ionization
processes, each involving one incoming electron and one molecule. There are good
reasons to believe that this picture of breaking up the complex total process into a
triggering event and many subsequent secondary ionization processes is a very good
approximation. On the side of experiments, the efficiency of a detector can be tested
and is typically found to be close to 100 %. This means that if any microscopic event
occurs within some detector, it will almost certainly be amplified to a visible signal.
On the side of the theory the separation of a triggering event from the rest depends
on the mean free path between events in relation to the sharpness of localization
in space and time which we may assign to this event. This in turn depends on
many factors, which have been discussed in [14]. Still a thorough treatment of the
detection process under realistic circumstances would be highly desirable.

The above discussion of the detection process implies some change of emphasis
in comparison to the standard treatment of measurement theory. In the idealization
of the measuring process by J. v. Neumann one starts from an initial state � of the
system and the “neutral state” of the measuring device �0. The total state is the
tensor product �0 ˝ �. After the measurement (if the system survives) a particular
result corresponds to a pair �0i ; �i . The total state is represented by the mixtureP
pi�
0
i ˝ �i , where pi denotes the probability of occurrence of the respective

result. Assuming that the initial states �0 and � are pure, which, though unrealistic,
is not forbidden, the process transforms the pure state into a mixture, which is
impossible within the known formalism. Much of the effort in measurement theory
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was devoted to the resolution of this apparent paradox. One strategy is to refer to the
macroscopic nature of the measuring device. The interaction process of the system
with this device leads to entanglement with more and more degrees of freedom.
One shows that some coarse grained distinctions of properties (projections into high
dimensional subspaces) approach stationary limits. These are the states �0i appearing
as partners of states �i of the system. If one idealizes the notion “macroscopic” by
infinite this argument may be put in precise mathematical language invoking the
concept of weak convergence.

The appearance of a highly impure final state is evident for many reasons [15].
There is interaction with uncontrollable partners leading to decoherence [16].
Moreover the initial state of the detector is usually far from purity. Furthermore
each reaction involving charged particles is accompanied by a Bremsstrahlung of
soft photons which escapes detection. The consequences of this for irreversibility
have been discussed [17]. In any case this is not the main part of the paradox.

The essential point is, however, that among the various possibilities precisely
one is realized in each individual case. A very weak source will generate a temporal
sequence of results with a lawfully determined relative frequency of occurrence for
each of them, but no knowledge of which event may occur next. The realization
of one specific unpredictable result among many alternatives involves a decision,
of which we see at least the distinction between clicks of the different detectors. A
decision by whom? Einstein wanted to make God responsible,2 or instead one might
say nature, or one may leave it open as unknown and call it just the “principle of
random realization” [14]. We emphasize that the decision arises already on the level
of a microscopic triggering event, and that the transition to a macroscopic signal
plays only the role of “freezing” this result in a document.

9.3.5 Persistent Entanglement, Bell Inequalities and Sequels

In 1964 J. Bell presented an inequality which exhibited a quantitative difference
between the quantum mechanical prediction for some probabilities and any expla-
nation of the process in terms of “hidden variables” [19]. He discussed the following
process mentioned a few years earlier by D. Bohm: A spin-0 particle decays into
two spin-1/2 particles moving in opposite directions for a long time till one of them
enters the lab of Alice, the other one the lab of Bob. In both cases the arriving
particle is subjected to a measurement of the spin orientation by a Stern-Gerlach
arrangement. This can yield two possible outcomes: parallel or antiparallel to the

2Einstein to James Franck: “Schlimmstenfalls kann ich mir noch vorstellen, daß Gott eine Welt
hätte schaffen können, in der es keine natürlichen Gesetze - also kurz gesagt: ein Chaos - gibt.
Aber daß es statistische Gesetze mit endgültigen Lösungen geben soll, d. h. Gesetze, die Gott in
jedem einzelnen Fall zwingen zu würfeln, das finde ich im höchsten Maße unangenehm.” quoted
from [18].
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orientation of the Stern-Gerlach magnet. We denote this result by .a; ˛/, where a
is the unit vector describing the direction of the magnet; ˛ D ˙1 distinguishes the
two possible results. The spin-part of the two-particle wave function after the decay
is a singlet state and this will remain so practically unchanged up to the detection
process. This singlet state is a pure two-particle state which cannot be decomposed
into any mixture, in particular not into a convex combination of products of single-
particle states. This is meant by the term “entanglement” or “non-separability” and
this suggests that not only it is impossible to assign any “conventional attributes”
(“hidden variables”) but even no quantum state to the individual particles. The
former impossibility has been demonstrated by Bell, the latter by Clauser, Horne,
Shimony and Holt [20]. We shall follow here the arguments by Clauser et al. in
deriving the inequality which delimits the second impossibility.

The ensemble of all particles received by Bob may be described by an impure
one-particle quantum state �B . Since the twin particles are correlated due to their
common birth it is not surprising that the probability for a particular measuring
result of Bob depends on the result of Alice’s measurement on the twin. However,
entanglement is more than ordinary correlation.

Suppose now that a particle is endowed with some objective property � and the
joint probability in the ensemble of pairs of particles is given by a distribution
function �.�1; �2/ which describes ordinary correlation between �1 and �2. We
assume further that � determines the probability w.�I a; ˛/ for the measuring result
.a; ˛/, yielding for the expectation value

h aI� i D w.�I a;C/ � w.�I a;�/ :

We note that w.�I a;C/C w.�I a;�/ D 1 because in the measurement a, one of the
alternatives ˙1 must occur. The joint probability for .a; ˛I b; ˇ/ is then

W.a; ˛I b; ˇ/ D
Z

d�1 d�2 �.�1; �2/w.�1I a; ˛/w.�2I b; ˇ/ : (9.3)

For the expectation value in the joint measurement, which is defined by

h aI b i � w.a;CI b;C/ � w.a;CI b;�/ � w.a;�I b;C/C w.a;�I b;�/

one obtains the representation

h aI b i D
Z

d�1 d�2 �.�1; �2/ h a; �1 ih b; �2 i : (9.4)

From this, together with the positivity and normalization of the distribution function
�.�1; �2/ one obtains inequalities between expectation values for combinations of
measurements with different orientations of the apparatuses,

jh aI b i C h aI b0 i C h a0I b i � h a0I b0 ij 	 2: (9.5)
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The experimentally observed violation of this inequality shows that the assumption
of an ordinary correlation between assumed properties �1, �2 is not tenable. Instead
one has the following situation: If Bob receives the full information from Alice
about what she has done and found in her measurements, he can split his ensemble
into two subensembles according to Alice’s measuring result ˛ D ˙1 on the twin.
Then these subensembles define two orthogonal pure states which depend on the
orientation of Alice’s device. It must be stressed that this has nothing to do with any
physical effect of Alice’s measurement on the particles received by Bob. Nor is it
important how fast the information is transmitted. Bob and Alice can get together
leisurely after the experiments are finished to evaluate their records. They only have
to establish the correct pairing of the events, which can be found for example from
the records of the arrival times. No witchcraft is involved. It shows, however, that the
pure state of the particle has no objective significance. It does not describe a property
of an individual particle but only the defining information about the subensemble
in which the particle is filed. And here this is determined by the result of Alice’s
measurement on the twin.

This implies an enhancement of Bohr’s tenet mentioned in the introduction.
Not only can we “not assign any conventional attribute to an atomic object”
but we cannot even assign any individual quantum state to the particle. It puts
in question our traditional picture of the reality of “atomic objects” (particles).
Nicholas Maxwell has coined the term “Propensiton” for such an object [21]. It
propagates according to a deterministic law such as a Schrödinger equation which
is invariant under time reversal. But it does not represent any phenomenon. It is the
carrier of propensity contributing to probability assignments.

9.4 Field Theory and High Energy Experiments

9.4.1 Quantization and Second Quantization

The way from classical mechanics to quantum mechanics discovered by Heisenberg
became the prototype for the development of quantum theories in various regimes.
This method called quantization is described in the terminology introduced by
Dirac as the replacement of “c-numbers” by “q-numbers”. The former denote the
conventional variables of the classical theory which have numerical values. The
latter denote elements of a noncommutative algebra which can be represented
by operators in a Hilbert space. In the case of Hamiltonian mechanics this
correspondence has a group theoretic background. The Poisson brackets of the
c-number theory are replaced by the commutators of the corresponding q-numbers.
The former define the Lie algebra of the group of canonical transformations, the
other the Lie algebra of unitary transformations in the Hilbert space of wave
functions. Since one can show that these two groups are not isomorphic, this formal
correspondence can only hold for some subset of preferred variables. Among these
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are the generators of the geometric invariance group which, in the non-relativistic
case, is the inhomogeneous Galilei group consisting of translations in space and
time, rotations and proper Galilei transformations, i.e. transitions to a uniformly
moving coordinate system. By Noether’s theorem the generators of these relate to
momentum, energy, angular momentum and the position of the center of mass at
time t D 0. The irreducible ray representations of this group can be found in the
book by Hammermesh [22]. They describe the quantum theory of a single particle
with Heisenbergs commutation relations between position and momentum.

This work was motivated by the seminal work by Wigner, who classified all
irreducible, unitary ray representations of the inhomogeneous Lorentz group and
found that those with positive energy correspond to the quantum theory of a single
particle in empty space. They are distinguished by the value of mass and spin [23].

Already in 1930 Heisenberg and Pauli applied the rules of quantization to
electrodynamics [24]. It took, however, 20 years with numerous modifications and
other ideas till a viable theory, quantum electrodynamics, was established. We must
restrict us here to a few comments.

1. The starting point for quantization must be the Dirac Maxwell system, considered
as a classical field theory. It involves the complex Dirac field ‰.x/ representing
charged matter and a vector potential A.x/ for the Maxwell field. Since
the Dirac field originally appeared as the wave function of an electron in
quantum mechanics its quantization led to the unfortunate expression “second
quantization”. This added fuel to mystifications surrounding the concept of
quantization lifting it from the position of a heuristic crutch to the level of a
fundamental principle. The c-number version of the Dirac field is on the same
level as Maxwell’s theory. Both describe continuous waves. The quantum aspect
does not arise until this is combined with the picture of discrete individual
particles, interpreting the wave function as a probability amplitude of an electron
resp. a photon.

2. There is a common geometric background of the c-number and q-number
versions. They both describe a fiber bundle over space-time. The value of the
Dirac field at a base point is recorded on the respective fiber, the fundamental
group being U.1/ which changes the phase. The vector potential establishes the
connection between fibers.

9.4.2 Field Theory

Comparing the physical interpretation of quantum mechanics with that of quantum
field theory we see one important change: The notion of “physical system” has
disappeared or rather it was absorbed in the notion of state. The object of observation
is no longer materially defined, but it is the condition of some region of space-time.
In quantum electrodynamics one might consider as the basic observable the electric
or magnetic field strength at a point or rather their average values in a small region.
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Bohr and Rosenfeld undertook it to study the possibility of such measurements and
to verify that the ensuing uncertainties are in accordance with the commutation
relations [25]. The proposed method appears, however, to be rather adventurous.
Concerning realistically available detectors we note that one cannot expect to know
the assignment of a specific operator to a given detector. From this we conclude
that we should not aim at giving a mathematical counterpart to a single detector
but describe the set of all detectors indicating an event in a specific space-time
region O. This leads to a correspondence between a space-time region O and a
noncommutative algebraA.O/ specified by a net of algebrasO 7! A.O/, satisfying
a few natural requirements. This so-called “algebraic approach” or “Local Quantum
Physics” has been shown to carry sufficient information to determine the particle
content and collision cross sections of the theory [26].

9.4.3 High Energy Experiments

In the reaction area of a storage ring high intensity high energy beams of electrons
and positrons may cross each other and the results of possible collision processes
are registered in arrays of detectors. From these the individual histories of such
processes are reconstructed such as

eC C e� ! C C � I ˙ ! e˙ C � C N� (9.6)

or

eC C e� ! q C Nq I (9.7)

The quarks q and Nq transform into hadronic jets in opposite directions. The detector
signals do not refer to any of the processes indicated by the arrow in (9.6) and (9.7).
They indicate the interaction of one of the charged particles listed on the right
hand side of (9.6) and (9.7) with molecules in one of the detectors. Therefore the
observables (detectors) play only an auxiliary role and the purpose of the experiment
is not the measurement of any observable; it is a reconstruction of a sequence of
events. The concept of observable does not fit here and the central role is taken over
by the concept of “event”.

9.5 Concluding Remarks and Outlook

In the foregoing section we have emphasized the need to regard the notion of
“event” as a fundamental, primary concept, ultimately replacing the concept of
observable. It establishes the bridge to reality and space-time. For many purposes
it suffices to understand by the term “event” just a detector signal. But, aiming at
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a fundamental theory, one can push this to finer distinctions: Invisible processes
like microscopic triggering events or elementary reactions as described in (9.6)
and (9.7) which are reconstructed from many secondary detector signals. If the
occurrence of events is not governed by strict deterministic laws but left to random
realizations, this necessarily leads to a bipartition of the theory. On one side there
must be the characterization of possible events with their attributes, on the other
side the assignments of probability for their occurrence, which is subsumed in the
notion of “quantum state”. These probability assignments change continuously with
the passage of time between events and may be pictured as the propagation of
“Propensitons” establishing links between events. The realization of a specific event
implies a discontinuous change of the quantum state.

One may note the parallelism between this bipartition and Bohr’s principle
of complementarity of wave aspects vs. particle aspects. The former refer to the
continuous change of the quantum state between events, the latter to the discrete
realization of an event. One may even recognize some similarity to Bohr’s somewhat
mystical complementarity between space-time and causality which was hailed by
Heisenberg as the deepest insight. If “causality” is understood as strict determinism
(e.g. the Schrödinger equation) and space-time stands for one of the essential
attributes of an event, namely its localization, then this complementarity refers to
the same bipartition. There is, however, one essential difference. We do not regard
the bipartition as a complementarity leaving us the choice to focus on the one or the
other aspect. Rather both are needed in succession.

Our discussion here concerned language, concepts and interpretation referring to
existing theory. This remains on a qualitative level. What is missing in all this is a
precise mathematical representation of possible events which would be needed for a
self contained formulation of the theory in terms of these concepts. It must include
the essential attributes of an event, namely: the final resulting impure state and the
localization in time as well as in space. M. Toller has reviewed existing attempts at
defining a time of occurrence and proposed a definition of localization in terms of
“positive operator valued measures” [27].

This addresses at least some part of the problem, though it remains far from
giving a satisfactory answer. A full solution of this problem could open a wide
perspective: the representation of possible histories as a category whose objects are
events and whose directed arrows are propensitons describing causal links between
events. It would include the description of possible space-times generated by the
processes and dependent on the energy-momentum flow.
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Chapter 10
Computation Through Neuronal Oscillations

K. Hepp

“Allerdings” (“Certainly”. Poem by Goethe (G) to a Physicist (P)):

P: Ins Innre der Natur - P: Into the interior of Nature -

G: O du Philister! - G: Oh you Philistine! -

P: dringt kein erschaffner Geist. P: no created mind can enter.

..

P: Glückselig, wenn sie nur P: Happy, if she only

die äussre Schale weist! shows the external shell!

..

G: Alles gibt sie reichlich und gern. G: All she gives richly and eagerly.

Natur hat weder Kern Natur has neither core

noch Schale. nor shell.

Alles gibt sie mit einem Male. Everything she gives at once.

..

10.1 Introduction

Some of us believe that natural sciences are governed by simple and predictive
general principles. This hope has not yet been fulfilled in physics for unifying
gravitation and quantum mechanics. Epigenetics has shaken the monopoly of the
genetic code to determine inheritance [4]. It is therefore not surprising that quantum
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mechanics does not explain consciousness or more generally the coherence of the
brain in perception, action and cognition. In an other context, others [105] and
we [66, 67] have strongly argued against the absurdity of such a claim, because
consciousness is a higher brain function and not a molecular binding mechanism.
Decoherence in the warm and wet brain is by many orders of magnitude too strong.
Moreover, there are no efficient algorithms for neural quantum computations.
However, the controversy over classical and quantum consciousness will probably
never be resolved (see e.g. [50, 53]).

Are there new and powerful coherence generating mechanisms in the brain, based
on classical physics? This is the central question of this essay. Is Goethe’s poem
relevant for modern neuroscience?

The human brain is the most complex ‘stand-alone computer’ on our planet.
Each mm3 of the gray matter in neocortex contains �105 neurons and �4 km
wire. Humans have �1011 neurons and each neuron is synaptically connected
to �104 other neurons. We shall mainly deal with the vertebrate neocortex with
�80% pyramidal neurons [102] and �20% interneurons [39]. The colocalization
of processing and memory provides an architecture for efficient parallel processing.
Parallel processing requires synchronization, a conventional wisdom from computer
science applied to the brain by Singer [100]:

‘The brain is a highly distributed system in which numerous operations are
executed in parallel and that lacks a single coordinating center. This raises the ques-
tions of (i) how the computations occurring simultaneously in spatially segregated
processing areas are coordinated and bound together to give rise to coherent percepts
and actions, (ii) how signals are selected and routed from sensory to executive
structures without being confounded, and finally (iii) how information about the
relatedness of contents is encoded. One of the coordinating mechanisms appears
to be the synchronization of neuronal activity by phase locking of self-generated
network oscillations.’

Looking back on the history of seven decades of investigating neural oscillations
in the brain, starting with [2] in the olfactory bulb and then brought to prominence
by Gray and Singer [46] in the visual cortex, we will critically contrast neuronal
oscillations in the brain with analogous operations in the Josephson quantum
computer (JQC).

A quantum computer using Josephson junction qubits is, from the point of
the microscopic electron-phonon interaction, a macroscopic device which obtains
its current-flux nonlinearity from a phase transition in the thermodynamic limit
of two weakly coupled BCS system ([8, 60]; caricaturized by Hepp [52]). By
combining such nonlinear inductors with other circuit elements one obtains a
classical Hamiltonian system which, when quantized, leads after truncation to qubits
(see [95]). These 2-level systems can be controlled by external electromagnetic
fields via the Jaynes-Cummings model of electron-photon interactions. Clearly, the
many approximations in this construction necessitate complicated error corrections,
with the hope that there is no macroscopic conspiracy of errors (see [29]).

On the ‘top-down’ level the JQC belongs to a well defined computational
framework [1]. The neglected degrees of freedom of the underlying nonrelativistic
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quantum electrodynamics (QED) only enter as ‘noise’, producing decoherence. The
most active research is ‘middle-out’, on the device level. The ‘bottom-up’ approach
to the JQC is absurd: nobody can describe the implementation of the Shor algorithm
to factor 15 on a JQC [73] in the formalism of microscopic QED. The three levels
are tightly coupled by common physical laws.

The human brain, on the contrary, is a construct shaped by the devious course
of evolution.The brain has many different scales. The microscale of O(1/1,000 mm)
involves individual neurons, glia cells and synapses. On the mesoscopic scale of
O(mm) one deals with groups of hundred thousand neurons and their circuits. On
the macroscopic level one would like to understand the whole brain with O.1011/
neurons. Before dealing with neuronal oscillations on the mesoscopic scale in
Chap. 4 we have to deal with the macroscopic scale in Chap. 2 and the microscale
in Chap. 3. The impatient readers can avoid the technical and highly incomplete
elaborations in Chaps. 2, 3 and 4 and jump directly to the conclusions in Chap. 5 or
to their favorite articles in the References.

It is impossible to explain here systematically the basic neurophysiological
notions. Fundamental neuroscience is treated in excellent textbooks [62, 103].
In my essay I will refer to them and to the many easily accessible reviews in
the Scholarpedia on the Internet. I will reformulate in less technical language the
careful wordings in the abstracts of several peer-reviewed papers, while being less
formal when providing the general background. This ‘picture gallery’ will convey
to a physicist a flavor of modern neuroscience.

10.2 Connectome

“I am my connectome!” [94]
Neuroanatomy is the basis for formulating and testing ideas about how computa-

tions are performed by neural circuits. Connectomes, complete wiring diagrams of
brains’ are scarce, the most famous and only example being that of the 302 neurons
of the roundworm Caenorhabditis elegans (C. elegans).

Helmstaedter [51] present for �0:001 mm2 of the mouse inner plexiform layer
(the main computational region in the mammalian retina) the dense reconstruction
of 950 neurons and their mutual contacts. This was achieved by applying a
combination of manual annotation using human experts and machine-learning-
based volume segmentation to serial block-face electron microscopy data. They
found a new type of retinal bipolar cell and many violations of Peter’s Rule (saying
that the synaptic connections in the brain are determined essentially by geometrical
proximity). Measured by this heroic technical effort the new results seem to be
meager. If achievable, however, connectomics of mammalian brains will probably
become as important as the human genome has become for the molecular biology
of the cell [4].

However, even if one had complete access to the connectome of the human retina
with its �106 ganglion cells one would not understand how this important input
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station of the visual system works. Synaptic connections in the brain are constantly
changing, showing context sensitivity and time- and activity dependent effects.
These are manifest over a vast range of time scales, from synaptic depression lasting
a few milliseconds to long-term potentiation lasting weeks. In short, connectivity
is as transient, adaptive, and context sensitive as brain activity per se. Therefore,
it is unlikely that the characterization of the static connectome alone will furnish
deep insights about the dynamic processing of the brain. Helmstaedter’s next target
(private communication) is the dense reconstruction of layer 4 of a rodent’s cortical
barrel column. It will take many years to see what is microscopically true in the
claims by Hill et al. [54] and taken up in Chaps. 3 and 5 that Peter’s Rule and the
morphologies of cortical pyramidal neurons and interneurons ensure a robust and
invariant set of distributed inputs and outputs between specific pre- and postsynaptic
populations of neurons in a cortical column.

Neuroscience, however, can thrive with a macroscopic connectome provided by
light-microscope neuroanatomy [28]. Recent work in Henry Kennedy’s laboratory
started from a parcellation of the macaque neocortex into 93 areas (see Fig. 10.1,
[74])

Fig. 10.1 Reconstruction of the cortex of monkey M132. (a, b) are side views from the outside
and inside of the two hemispheres. (c) is an inflated view and (d) a surface-area preserving map of
the parcellation into 93 areas. With permission from [74]
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Retrograde tracers were injected into 29 areas distributed over six regions in the
occipital, temporal, parietal, frontal, prefrontal, and limbic cortex. These regions
contained the areas, in which neuronal oscillations will be analyzed in Chap. 4: The
areas V1 [23], V2, V4 and TEO of the ventral visual stream, the areas MT, MST,
DP and LIP in the dorsal visual stream, and the frontal eye fields (FEF), areas 8l and
8m [104].

The neocortex can be divided ‘horizontally’ into six layers, the so-called
supragranular layers L1, L2 and L3, the granular layer L4, which receives the main
projections from the subcortical thalamus, and the infragranular layers L5 and L6.
Strongly simplified, feedforward (FF) anatomical pathways that connect different
areas of cortex originate mainly from supragranular layers and terminate in L4 in
hierarchically higher cortical areas, while feedback (FB) pathways originate mainly
in infragranular layers and L1 in higher areas and avoid L4 in hierarchically lower
areas. In the visual system a hierarchy can be established using the ‘SLN value’.
The SLN value s(i,j) of a projection from source i to target j is the fraction of
labeled neurons located in the superficial layers of area j after tracer injections in a
single area i. By fitting SLN to the parcellation of Fig. 10.1 [9] and [75] determined
hierarchical levels of the areas in the ventral and dorsal visual system (see Fig. 10.2).

Fig. 10.2 (a) Canonical microcircuit [31] connecting ‘vertically’ two neocortical areas. (b) Car-
toon of the laminar distributions in a cortical mid-level area. (d) Cartoon of cortical counterstreams.
(e) Hierarchical organization of visual cortical areas using SLN as a distance measure. Left ventral,
right dorsal visual stream. With permission from [75]
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It was a new discovery that the foveal area 8l of the FEF (dedicated to the highest
density of receptors on the retina) has the same hierarchical level as V4.

Systematic injections in 29 typical areas of the parcellation determined a 29� 29
matrix M of elements s(i,j) for each area-to-area pathway. The full macroscopic
connectone of the parcellation would be the 91 � 91 matrix, which is presently
unknown. The graph-theoretical analysis of M has brought many important insights
[76]. The data reveal high-density cortical graphs in which economy of connections
is achieved by weight heterogeneity and distance-weight correlations. These prop-
erties define a model that predicts many binary and weighted features of the cortical
network. FB and FF pathways between areas implement a dual counterstream
organization, and their integration into local circuits constrains cortical computation.

The functional interpretation of the anatomical hierarchy in Fig. 10.2 is still
unclear. In the visual system of the macaque the shortest latency for the onset of
a salient target determines another ordering in the dorsal stream: the latency in
response to a sudden visual stimulus of the fastest neurons in V1 is �35ms, of MT
�40ms, of LIP �45ms and of FEF �50ms. In Chap. 4 we will analyze footprints
of neural oscillations in the macaque during active vision, where information will
propagate along the macroscopic connectome.

10.3 Neuro-Electrodynamics

The Neuro-Electrodynamic (NED) model of neurobiology is based on quasi-
stationary electrodynamics with ionic and chemical currents through and around
membranes. The mathematical formulation of NED relies on the Maxwell equations
in matter, on the cable equation for passive nerve conduction, on the Hodgkin-
Huxley excitable membrane equations, and on special implementations for electro-
chemical and electric synapses, for ion channels and for neuro-transmitters. The
NED model is a well-documented set of phenomenological equations (see [25, 65]),
which is much less fundamental than the Standard Model of particle physics.

Charges in the brain generate electromagnetic fields that can be picked up outside
of the skull in the electro- or magneto-encephalogram (EEG, MEG), on the brain
inside the skull in the electro-corticogram (ECoG) and invasively by electrodes in
the brain as local field potentials (LFP). Synaptic inputs and their integration into
action potentials (spikes) generate the electric potential V(x,t) outside the neuron,
the superposition of contributions from sources at different positions. The LFP at
the point x is the low-pass temporal filtered component of V(x,t) (typically below
300 Hz). In this essay we will deal with the LFP in the theta (4–8 Hz), alpha (8–
12 Hz), beta (12–30 Hz), and gamma (30–80 Hz) bands. The boundaries of these
frequency bands vary between different studies.

The LFP is the mesoscopic manifestation of the activity of possibly millions of
neurons, depending on the task. It is relatively easy to measure using a multicontact
electrode, even in alert human subjects subject to ethical constraints. Hence the
LFP is important, but it is difficult to interpret. By an array of intracellular and
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extracellular electrodes [7] found that extracellular fields induced nonsynaptically
mediated changes in the somatic membrane potential that were less than 0.5 mV
under subthreshold conditions for spike generation. Despite their small size,
these fields could strongly entrain action potentials, particularly for slow (<8 Hz)
fluctuations of the extracellular field. One can boost slow oscillations in the brain
by applying from the outside of the scull time-dependent (0.75 Hz) external fields to
the brain and potentiate memory during sleep [78]. It is unknown in what form the
LFPs have to be included in the equations of NED.

Estimates about the reach the LFP vary strongly depending on measurement:
Katzner et al. [63] found that>95 % of the LFP signal originated within 0.25 mm of
the recording electrode. On the other hand, [61] estimated by direct measurements
that LFPs spread passively to sites more than a centimeter from their origins. These
findings appeared to be independent of the frequency content of the LFP.

What information is carried by the LFP signal? An important visual stimulus is
a plaid pattern. Consider two superimposed gratings moving in different directions.
This plaid may be perceived either as two surfaces, one being transparent and sliding
on top of the other (component motion) or as a single pattern whose direction
of motion is intermediate to the component vectors (pattern motion). The degree
of transparency, and hence the perception, can be manipulated by changing the
luminance of the grating intersection. Khawaja et al. [64] studied the transformation
from V1 to MT to MST for gratings and plaids and found that the LFPs measured
simultaneously with the spikes often exhibited properties similar to that of the
presumptive feedforward input to each area: in the high-gamma frequency band,
the LFPs in MST were as component selective as the spiking outputs of MT, and in
MT the LFPs have plaid responses that were similar to the spiking outputs of V1.
Such and similar findings suggest (wrongly, see below) that one can obtain from the
LPF the synaptic inputs to a local area and from the action potentials the output.

Compared to the rate coding of spikes the LFP signal can be rather coarse:
Lashgari et al. [69] found in V1 that LFP and single unit activity (SUA) had similar
stimulus preferences for orientation, direction of motion, contrast, size, temporal
frequency, and spatial phase. However, the average SUA had 50 times better signal-
to-noise relation, 20 % higher contrast sensitivity, 45 % higher direction selectivity,
and 15 % more tuning depth than the average LFP.

LFPs are everywhere in the brain: Gamma oscillations can be voluntarily
generated. Engelhard et al. [34] trained monkeys to specifically increase low-gamma
power in selected sites of motor cortex to move by ‘pure thought’ (driving a robot
via a brain-machine-interface) a cursor and obtain a reward. The monkeys learned to
robustly generate oscillatory gamma waves, which were accompanied by a dramatic
increase of spiking synchrony of highly precise spatiotemporal patterns, possibly by
attention to movement control [37]. On the other side LFPs were recorded in the
brain of a dying rat. Borjigin et al. [15] identified a transient surge of synchronous
gamma oscillations that occurred within the first 30 s after cardiac arrest and
preceded the isoelectric electro-encephalogram. Gamma oscillations during cardiac
arrest were global and highly coherent. This frequency band exhibited a striking
increase in anterior–posterior connectivity and tight phase-coupling to both theta
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and alpha waves. High-frequency neurophysiological activity in the near-death state
exceeded levels found during the conscious [45] waking state. The relation to human
consciousness reported in near-death experiences is, however, far fetched.

Giving its usefulness it is important to understand the LFPs from first principles.
Reimann et al. [88] simulated the LFP in a model of the rodent neocortical
column composed of >12,000 reconstructed, multi-compartmental, and spiking
cortical L4 and L5 excitatory pyramidal neurons and inhibitory basket cells,
including five million dendritic and somatic compartments with voltage- and ion-
dependent currents, realistic connectivity, and probabilistic AMPA, NMDA, and
GABA synapses. They found that the LFP reflects local and cross-layer processing.
Membrane currents dominate the generation of LFPs, not synaptic ones. Spike-
related currents can be visible in the LFP not only at higher frequencies but also
below 50 Hz. In the [88] model of a neocortical column layers 1, 2, 3 and 6, glia
cells (see [84]) and the back-reaction of the LFP on the membrane processes [7]
have been omitted, and the connectome has been dealt as schematically as in [54].
Still the conclusion of the paper is valid, the genesis of LFPs has to be re-evaluated.

In this example we see the problems with bottom-up large scale simulations of
the brain: size, intransparency of the computational steps and choice of neglected
degrees of freedom. A computer simulation of a brain area is a very unconstrained
activity, because one can never have all the data and because the theory of
NED is only a phenomenological framework. Therefore, whatever results emerge,
many are simply an artefact of the willful choice of approach and data. Thus the
simulation results will raise many illusory questions that will lead away from deeper
understanding and will never exhibit general laws. Simulations of the brain have no
universality like gravitation in Newton’s equations.

An alternative approach is to study the behavior of neural circuits in ‘wet-ware’
using controlled perturbations. Optogenetics [36] allows genetically marked neural
populations in an alert behaving animal to be stimulated by light. Cardin et al.
[24] showed in the cortex of an alert mouse that light-driven activation of fast-
spiking parvalbumin (PV) interneurons selectively amplified gamma oscillations
with a resonance at gamma frequency. In contrast, pyramidal neuron activation
amplified only lower frequency oscillations. They found that the timing of a sensory
input relative to a gamma cycle determined the amplitude and precision of evoked
responses of a pyramidal neuron.

This approach has recently been applied to the olfactory bulb (OB) in alert
behaving mice. A mouse has �1;000 different genetically encoded odor receptor
proteins, which are distributed in the olfactory sensory neurons (OSN) across the
nasal receptor surface. Every OSN of one odorant projects to a unique receptor-
specific glomerulus in the OB, whose excitatory output neurons, the mitral (M)
cells, are coupled dendro-dendrically to inhibitory granule (G) cells (see [97]). The
mitral-granule circuit generates gamma oscillations in the awake mouse. Lepousex
and Lledo [70] showed that gamma oscillations were amplified, or abolished,
after optogenetic activation or selective lesions to the M-neurons. In response to
pharmacological perturbations, long-range gamma synchronization was selectively
enhanced while mean firing activities remained unchanged. This change of the
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oscillatory state of the network impaired odor discrimination in an olfactory learning
task: gamma oversynchronization coupled in the network M-neurons related to
different odor components with a loss of smell acuity. Gamma oscillations with
(negative!) behavioral consequences for an alert mammal could be shown to be
dynamic properties of a neural microcircuit. Necessary and sufficient for gamma
was the reciprocal pyramidal-interneuronal (PING) coupling between M- and G-
neurons. However, the entire circuit of the mouse OB is much more complicated and
a simulation based on connectomics and the equations of NED is still impossible.

PING is not the only microscopic mechanism of neuronal oscillations. Courtin
et al. [27] showed by single neuron recordings and optogenetic manipulations in
alert mice that fear expression was causally related to the phasic inhibition (not
excitation!) of PV interneurons in the prefrontal (PF) cortex. The disinhibition
of PF pyramidal neurons projecting to the amygdala, a structure that encodes
associative fear memories, synchronized these neurons by the resetting of local
theta oscillations. These two complementary mechanisms, disinhibition in the PING
circuit and synchronization by resetting theta oscillations, led to fear expression.
Many more microscopic mechanisms for neuronal oscillations are proposed by
theoreticians (see e.g. [107]) or seen in reduced preparations.

10.4 Manifestations of Neural Oscillations in Active Vision

Correlations, correlations, correlations. . .
James [56] had already characterized attention in its most modern form: ‘Every

one knows what attention is. It is the taking possession by the mind, in clear and
vivid form, of one out what seem several simultaneously possible objects or trains
of thought. Focalization, concentration of consciousness are of its essence. It implies
withdrawal from some things in order to deal effectively with others,. . . ’

In this section we will discuss the contribution of oscillatory processes in the
alert behaving macaque monkey during active vision, namely vision, attention and
saccadic eye movements [38]. We will concentrate on the ventral and dorsal visual
stream, which have been most intensely studied on the cellular and LFP level.
Nonhuman primates are necessary to interpolate between mice and humans to
understand cognition and brain dysfunctions.

After the discovery of beta oscillations in the motor cortex by Murthy and Fetz
[81] neuronal oscillations were found in many areas of the brain of insects and
vertebrates, and very prominently in humans. What are their functions? Today
thousands of abstracts emerge when one searches for alpha, beta, gamma or theta
oscillations in ‘Medline’.

In the active vision system several testable and refutable hypotheses have
emerged. The correlation theory of brain functions by von der Malsburg [111] (often
criticized, e.g. by Shadlen and Movshon [96]) and the finding of gamma oscillations
in the cat visual cortex by Gray and Singer [46] and Eckhorn et al. [32] has led to
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the binding by synchrony (BBS) hypothesis [99]:

Spatially segregated neurons should exhibit synchronous response episodes if activated by
a single stimulus or by stimuli that can be grouped together into a single perceptual object.

The first data in the alert monkey from visual area MT supported BBS: Kreiter
and Singer [68] found that cells with overlapping receptive fields (RF: Alonso
and Chen [6]), but different preferences for directions of motion, could engage in
synchronous activity, if they were stimulated with a single moving bar. In contrast,
if the same cells were activated with two different bars, each moving in the direction
preferred by the cells at the two respective sites, responses showed no or much fewer
synchronous epochs.

The BBS hypothesis was questioned by many experiments: Thiele and Stoner
[106] manipulated the apparent transparency of plaid patterns. Although the direc-
tional tuning of plaids correlated highly with perceptual coherence, coherent plaids
elicited significantly less synchrony than did non-coherent gratings. Roelfsema et al.
[90] tested the BBS hypothesis in V1 of monkeys engaged in a contour-grouping
task and found that synchrony was unrelated to contour-grouping. Rate covaria-
tion depended on perceptual grouping, as it was strongest between neurons that
responded to features of the same object. Palanka and DeAngelis [83] generalized
the approach of [68]. By sampling more broadly and employing stimuli that contain
partially occluded objects, they conducted a more incisive test of the BBS in area
MT. They found that synchrony in spiking activity showed little dependence on
this task, whereas gamma band synchrony in field potentials could be significantly
stronger when features were grouped. However, these changes in gamma were small
relative to the variability of synchrony across recording sites and did not provide a
robust population signal for feature grouping.

The ultimate ‘disproof’ of the implementation of BBS in V1 or MT came from
Wolf Singer’s laboratory, again by using plaid stimuli. Lima et al. [72] found in
alert behaving monkeys that responses to the single components from gratings
exhibited strong and sustained gamma oscillations (30–65 Hz). The superposition of
the second component, however, led to profound changes in the temporal structure
of the responses, characterized by a drastic reduction of gamma oscillations in the
spiking activity and systematic shifts to higher frequencies in the LFP.

Despite these negative findings in V1 the interest in neural oscillations increased.
Research on V1 brought several intriguing results:

Ray and Maunsell [86] discovered that gamma increased monotonically with
contrast. Changes in stimulus contrast over time lead to a reliable gamma frequency
modulation on a fast timescale. Further, large stimuli whose contrast varied across
space generated gamma at significantly different frequencies in simultaneously
recorded neuronal assemblies separated by as little as 0.4 mm. Chalk et al. [26]
found that directing attention toward a visual stimulus at the RF of the recorded
neurons decreased LFP gamma power and gamma-spike coherence. Jia et al. [57]
discovered that the spatial extent of gamma and its relationship to local spiking
was stimulus dependent. Burns et al. [19] and Xing et al. [115] interpreted gamma
to be ‘filtered broadband noise’ (but: Nicolic et al. [82]). They saw identical
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temporal characteristics of gamma activity in both awake and anesthetized monkeys,
including large variability of peak frequency, brief oscillatory epochs (<100 ms on
average), and stochastic statistics of the incidence and duration of oscillatory events.
Jia et al. [58] found that there was no fixed relationship between LFP gamma power
and peak frequency, and neither was related to the strength of spiking activity.

Not all investigations aimed at ‘disproving’ the functionality of gamma in V1:
Womelsdorf et al. [114] found that the mutual influence among neuronal groups
depended on the phase relation between rhythmic activities within the groups. Phase
relations supporting interactions between the groups preceded those interactions
by a few milliseconds, consistent with a mechanistic role. These effects were
specific in time, frequency, and space. They therefore proposed that the pattern of
synchronization flexibly determined the pattern of neuronal interactions.

A counterstream (see Fig. 10.2d) of neuronal oscillations in the visual cortex was
discovered: Buffalo et al. [17] compared the magnitude and latency of attentional
enhancement of firing rates in V1, V2, and V4 in the same animals performing the
same task. They found a reverse order of attentional effects, such that attentional
enhancement was larger and earlier in V4 and smaller and later in V1, with
intermediate results in V2. Buffalo et al. [18] found that spike-field coherence in the
gamma frequency range (40–60 Hz) was largely confined to the superficial layers,
whereas the deep layers showed maximal coherence at low frequencies (6–16 Hz),
which included the alpha range. In the superficial layers of V2 and V4, gamma
synchrony was enhanced by attention, whereas in the deep layers, alpha synchrony
was reduced by attention. Spaak et al. [101] found a robust coupling between alpha
phase in the deeper layers and gamma amplitude in granular and superficial layers.
Moreover, the power in the two frequency bands was anticorrelated.

Roelfsema et al. [91] and van Kerkoerle [108] found that gamma activity started
in input layer 4 and propagated to the other layers, in accordance with a feedforward
information flow. In contrast, alpha oscillations were initiated in feedback recipient
layers 1 and 5 and propagated towards layer 4 in accordance with a feedback
effect. Alpha flowed in the feedback direction, from V4 to V1, whereas gamma
propagated in the feedforward direction. Microstimulation of V1 increased the
gamma oscillations in V4. Conversely, microstimulation in V4 caused an increase
in the V1 alpha oscillations while suppressing the gamma rhythm. These results,
taken together, indicate reciprocal mechanisms of alpha and gamma oscillations in
monkey visual cortex. They suggest that the early visual system gamma rhythm
is involved in the feedforward processing of information, while the alpha rhythm
reflects recurrent interactions. Vezoli et al. [109] and Bastos et al. [10] implanted
ECoG grids on macaque hemispheres covering the 8 visual areas V1, V2, 8l,
V4, TEO, DP, 8m and 7A shown in Figs. 10.1 and 10.2. The monkeys performed
a visual discrimination task during which the authors recorded LFP correlations
between all 28 pairs of sites with clear beta, gamma and theta bands. Analysing
their directionality by Granger causality (how much signals at one site are related
to the recent past in another area) they found that the gamma and theta bands
carried a feedforward and beta a feedback signature. These directed manifestations
of a temporal neural coding could be grouped into a functional hierarchy which
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corresponded astonishingly well with the anatomical hierarchy of Fig. 10.2. The
question arises how these signals are integrated through the synchronized firing
patterns in different cortical layers, as it has been shown by Roelfsema et al. [91]
for the connection between V1 and V4. Are the alpha and beta rhythms between V1
and V4 in Roelfsema et al. [91] and Vezoli et al. [109] just band overlaps or are they
different mechanisms acting on the neuronal firing rates?

These directed LFP correlations led to a new functional interpretation of neural
oscillations, to the Communication by Coherence (CTC) hypothesis [11, 42]:

Activated neuronal groups oscillate and thereby undergo rhythmic excitability fluctuations
that produce temporal windows for communication. Only coherently oscillating neuronal
groups can interact effectively, because their communication windows for input and for
output are open at the same [delayed-corrected] times.

In view of the difficulties with oscillatory coding in V1 it was not obvious that
CTC could operate between V1 and V2 on the neuronal level. However, Jia et al.
[59] found that visual stimuli that induced a strong, coherent gamma rhythm resulted
in enhanced V1 synchrony of spikes in pairs of neurons. This was associated with
stronger coupling of V1 and V2 by spiking activity, in a retinotopically specific
manner. Coupling was more strongly related to the gamma modulation of V1 firing
than to the downstream V2 rhythm. Roberts et al. [89] discovered a possible pathway
for CTC: Although gamma frequency increased with gratings of varying contrast in
V1 and V2 (by �25Hz), V1–V2 gamma coherence was maintained for all contrasts.
Moreover, while gamma frequency fluctuated spontaneously by �15Hz during
constant contrast stimulation, this fluctuation was highly correlated between V1 and
V2. The strongest coherence connections showed a layer-specific pattern, matching
feedforward anatomical connectivity, based on Granger causality.

Note that gamma followed the feedforward projection from the supragranular
layers of V1 to the granular layer of V2, and this was modeled by Roberts et al.
[89] using neurons obeying the Hodgkin-Huxley equations. One should, however,
keep in mind that the projections from V1 to V2 are highly diverse [33]. V2 is
thought to use its input from V1 as the basis for computations that are important for
visual form processing, such as signaling angles, object borders, illusory contours,
and relative binocular disparity. Neuronal oscillations alone can only change the
mesoscopic gain of this subtle information transfer effected by the spiking activity
of small neuronal populations.

V4 is the gateway of the ventral stream and has been intensively scrutinized
for neural oscillations. Fries et al. [41] discovered that neurons activated by the
attended stimulus showed increased gamma frequency (35–90 Hz) synchronization
but reduced low frequency (<17 Hz) synchronization compared with neurons at
nearby V4 sites activated by distractors. Naively, CTC should need a significant
spike-spike correlation for an efficient output of V4 to the next downstream neurons
in TEO, since without spikes there is no fast long distance communication. Such
correlations could not be found in a direct analysis of spike trains in the time
domain. However, when first multiplying the spike trains with discrete prolate
spheroidal sequence tapers and then transforming this signal into the frequency
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domain Fries et al. [43] found in the same data zero-phase gamma coherence among
spike trains of V4 neurons. This synchronization was particularly evident during
visual stimulation and enhanced by selective attention, thus confirming the pattern
inferred from LFP power and spike-LFP coherence, and it was rapid enough for
the interactions of top-down spatial and feature attention with bottom-up saliency.
Attention inside the receptive field of the recorded neuronal population enhanced
gamma synchronization and strongly reduced alpha (9–11 Hz) synchronization in
the prestimulus period. Figure 13 in [43] shows how a small effect (0.01 vs. 0.03 %
coherence) can be exhibited by sophisticated statistical methods. It is still unclear
by what circuits in the receiving areas the tapered V4 output could be decoded.

The statistical approach to spike-LFP correlations has recently been much more
perfected. Vinck et al. [110] studied how visual attention is orchestrated by the
activity of excitatory and inhibitory cells. They tentatively identified these neurons
as broad (BS) and narrow spiking (NS) cells and analyzed their synchronization
to the LFP in two macaque monkeys performing a selective visual attention task.
Across cells, gamma phases scattered widely and were unaffected by stimulation or
attention. During stimulation, the phases of NS cells lagged BS cells on average by
�60ı and gamma synchronized twice as strongly. Attention enhanced and reduced
the gamma locking of strongly and weakly activated cells, respectively. During a
prestimulus attentional cue period, BS cells showed weak gamma synchronization,
while NS cells gamma-synchronized as strongly as with visual stimulation. These
analyses reveal cell-type-specific gamma patterns in macaque visual cortex and
suggest that attention affects neurons differentially depending on cell type and
activation level. This study is an important first step to study neuronal oscillations
in active vision on the circuit level. A pandemonium of correlations emerged which
often had no cogent interpretation in terms of CTC. For instance, taking the LFP as a
clock, gamma phases of individual neurons scattered widely and were unaffected by
stimulation or attention. In the future optogenetic manipulations of subpopulations
in V4 might clarify this picture after having solved many more hard questions, as
they were already discussed in Chap. 3.

Some oscillatory patterns in V4 correlated well with theoretical expectations.
Bichot et al. [13] recorded from neurons in area V4 of monkeys freely scanning a
complex array to find a target defined by color, shape, or both. Throughout the period
of searching, neurons gave enhanced responses and synchronized their activity in
the gamma range whenever a preferred stimulus in their receptive field matched
a feature of the target, as predicted by parallel models for visual search. Neurons
also gave enhanced responses to candidate targets that were selected for saccades,
reflecting a serial component of visual search. Womelsdorf et al. [113] showed that
behavioral response times to a stimulus change could be predicted by the degree
of gamma-band synchronization among those neurons in monkey V4 that were
activated by the relevant stimulus. When there were two visual stimuli and monkeys
had to detect a change in one stimulus while ignoring the other, their reactions were
fastest when the relevant stimulus induced strong gamma synchronization before
and after the change in stimulus. This enhanced gamma synchronization was also
followed by shorter neuronal response latencies on the fast trials. Conversely, the
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monkeys’ reactions were slowest when gamma-band synchronization was high in
response to the irrelevant distractor.

These papers show convincing correlations between neuronal oscillations and
behavior on a mesoscopic scale, but not on the level of neural circuits.

There are manifestations of CTC between V1 and V4: Bosman et al. [16] used
two stimuli, activating disjoint V1 sites in the ECoG, and both activating a V4
site equally strongly. When one of those stimuli activated one V1 site, its gamma
synchronized to V4. When the two stimuli activated two V1 sites, primarily the
cued site gamma synchronized to V4. Frequency bands of gamma activities showed
substantial overlap containing the band of interareal coherence. Gamma-mediated
interareal influences were predominantly directed from V1 to V4, based on Granger
causality. Only LFP correlations were tested in this permanently implanted ECoG
array. Similarly Grothe et al. [49] found that gamma-band phase correlation of the
local V4 population with spatially disjoint sub-populations of its V1 input was
differentially modulated by attention. It was high with the input sub-population
representing the attended stimulus, while simultaneously very low between the
same V4 population and the other input-providing sub-population representing the
irrelevant stimulus. Also here no spike-spike correlations could be tested.

Is CTC necessary for visual object recognition along the ventral stream? The
standard approach to model the rapid recognition of objects despite substantial
variation in appearance is based on a �50ms interval rate code without relying
on neuronal oscillations [30, 85]. Optogenetic experiments in V1 of alert mice
by Histed and Maunsell [55] showed that behavioral effects of weak inputs to
a visual RF depended only on the number of spikes over a period of 100 ms
in the corresponding neuronal population, regardless of the temporal pattern of
optogenetic stimulation by which the visual input was ‘simulated’. No behavioral
effects were seen for beta- or gamma-patterned light pulses. This linear summation
in V1 of weak inputs showed the effectiveness of rate coding. However, other tasks
like attention in primates [79] or conscious perception [87] could be enhanced by
coherent neuronal oscillations.

An important test for CTC is attention in the counterstream between V4 and
TEO in the ventral visual stream: Saalmann et al. [92] mapped the visual RF in the
thalamus, in the Pulvinar (PU), relative to those in V4 and TEO and recorded spikes
and field potentials from these interconnected sites in monkeys performing a visuo-
spatial attention task. The PU synchronized activity between V4 and TEO according
to attentional allocation. Their interpretation of the data, namely that the pathway
V4 to PU to TEO relied on alpha oscillations, is surprising in view of the strong
evidence that alpha and gamma are anti-correlated in V4. However, Saalmann et al.
[92] and Schafer et al. [93] also found significant gamma synchronization between
V4, PU and TEO. Both synchronizations could be used, since the brain usually does
not rely on only one mechanism and since alpha in PU could be different from alpha
between V1 and V4. The correlational evidence is ambiguous and [92, 93] disagree
in their interpretation of the data.

Interesting findings have been made the dorsal visual stream on the interaction
between FEF and LIP with V4 (see Fig. 10.2). In an early fundamental paper [20]
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found that the frontal cortex was the first to reflect the target location during top-
down attention, whereas the parietal area LIP signaled the target earlier during
bottom-up attention to ‘pop-up’ stimuli. Synchrony between frontal and parietal
areas was stronger in lower frequencies during top-down attention and in higher
frequencies during bottom-up attention. This result suggested that top-down and
bottom-up signals arose from the frontal and sensory cortex, respectively, and
different modes of attention could synchronize at different frequencies.

In the FEF the neuronal responses in the memory-guided saccade task can be
classified according to their visual and/or saccade-related activity: visual neurons
have only visual responses at onset of the visual stimulus, movement neurons have
no visual responses, but have saccade-related activity, and visuo-movement neuron
show both patterns. V4 and FEF are on the same hierarchical level and even form a
closed driving loop in the scheme of [75]. Here the functionality of CTC can be seen
on the cellular level: Gregoriou et al. [47] found that attention to a stimulus in their
joint receptive field leads to enhanced oscillatory coupling between V4 and FEF,
particularly at gamma frequencies. This coupling appeared to be initiated by FEF
and was time-shifted by about 8–13 ms across a range of frequencies, the estimated
propagation delay from FEF to V4. Gregoriou et al. [48] found that in the attention
task, only visual and visuo-movement FEF neurons showed enhanced responses,
whereas movement cells were unchanged. Importantly, visual, but not movement
or visuo-movement cells, showed enhanced gamma frequency synchronization with
activity in V4 during attention. Within FEF, beta synchronization was increased for
movement cells during attention but was suppressed in the saccade task, consistent
with the findings by Murthy and Fetz [81].

Neuronal oscillations in many more anatomically connected areas have been
explored in the alert behaving monkey and have provided a fairly consistent
interpretation of the macroscopic connectome. In humans Moratti et al. [80] studied
using MEG the effective coupling of visual (VIS) and parietal (PA) areas during the
recognition of a ‘Gestalt’ in two-tone images. They applied a statistical test (DCM,
Friston et al. [44]) to the spectral densities of these sources in the gamma range.
Thereby they tested different model circuits between VIS and PA and inferred a
reverse hierarchical processing in this task (i.e. from top to bottom in Fig. 10.2e),
correlated with gamma oscillations. This is an important discovery, but much more
is needed to anchor in neuronal circuit dynamics the correlational evidence of this
chapter.

10.5 Conclusion

Synergy between the billions of neurons in the mammalian brain, where every
nerve cell alone is a sophisticated ‘microprocessor’, is obviously necessary for
sensorimotor coordination and cognition. In absence of a central clock synergy
is implemented in different circuits and tasks differently by neuronal firing rates
and rhythms (see [3]). Coherent neuronal oscillations are one of the manifestations
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of the microscopic dynamics of the brain. There is a superficial analogy with
the coherent quantum superpositions in the JQC: The computational power of a
quantum computer is lost by decoherence beyond error correction, and similarly
the highly optimized performance of neural circuits deteriorates when one perturbs
coherence by pharmacological or optogenetic means (see e.g. [70] in Chap. 3).
However, as Hirsted and Maunsell [55] found (see Chap. 4) fine temporal, and more
specifically oscillatory codes are not always necessary to explain behaviour on the
circuit level. Similarly, in the JQC computations by classical algorithms are still
possible, when decoherence is too strong.

There is accumulating evidence that dysfunctions of the human nervous system
can be due to the degradation of neural processes whose footprint are neural
oscillations. For instance, gamma oscillations are linked to resonances implemented
by PV interneurons (see [22, 24, 112]), and one of the causes of schizophrenia has
been traced to alteration in PV interneurons which contribute to gamma disturbances
and cognitive deficits [71]. Another crippling dysfunction of the brain is Parkinson’s
disease. Here the tremor frequency is about half that of beta oscillations, which are
overexpressed in the brainstem subthalamic nucleus (RN). Again, as in the OB,
neuronal oversynchronization is dysfunctionally related to behavior, and neuronal
oscillations are the footprint of large-scale interactions in the motor system [98].
What is their microscopic basis? This awaits further study.

It is much easier to construct a JQC based on known physical laws than to find out
experimentally the combination of possible mechanisms which synchronize multi-
areal neural activity in a mammalian brain. Synthesis is simpler than analysis, even
if we are still uneasy about the foundations of quantum mechanics.

Several large-scale international collaborations promise new tools. One tool is
connectomics as discussed in Chap. 2. Another is to capture nerve activity in an
entire mammalian brain ‘spike by spike’ [5]. One can estimate the amount of data
and their processing in this approach from a recent paper of [12]. Here recordings
from only 512 channels were implemented. The analysis of spikes and LFPs from
256 simultaneously recorded microelectrodes was possible only because decades
of research on the hippocampus [21] have established a meaningful mesoscopic
picture, in terms of which these neuronal firing patterns could be analysed. For a
billion neurons this is as absurd as trying to understand the implementation of the
Shor algorithm on a JQC from microscopic QED.

One could also envisage to simulate a mammalian brain bottom up on a network
of supercomputers. In 2011 the ambitious “Blue Brain Project” (BBP, Markram
[77]) promised in its submission to the ETH Board “to simulate the human brain
neuron-for-neuron within 10 years in order to understand mental diseases and to
develop new computers”. The inside report about the proposal and its reviews
was published only 2 years later [35]. The ‘proof of feasibility’ in this proposal
was based on the same schematic ‘neocortical column’ as the [88] simulation
described in Chap. 3. The claims of the BBP created strong criticism among
neuroscientists in a meeting in Bern 2012. The majority of the participants believed
that the promises of the BBP will never be fulfilled (Google “Perspectives of High
Power Computing in Neuroscience”). In 2013 the “Human Brain Project” has been



10 Computation Through Neuronal Oscillations 251

accepted by the European Union as ‘Flagship’ for the next 10 years, with the BBP as
‘Brain Simulation Platform’ and as a leading house. Clearly the outlandish claims
(discussed in this essay) in the 2011 proposal to the ETH were instrumental in
the Swiss government’s decision to spend 160 Million Euros on the BBP. For me,
‘Flagships’ have to sail on real water.

Goethe’s advice in “Allerdings” was motivated by his disputes with the physicists
on color vision. The great technical advances in the neurosciences show that
today there is no separation between the “Schale”, the sensorimotor periphery, and
the “Kern”, the immense interneuronal connectome. Neuronal oscillations, albeit
mostly based on correlational evidence, have provided a new view on systems
neuroscience and so have connectomes, multi-array spike sampling and computer
simulations. The scope of neuroscience has become wider: The links to psychiatry
and neurology are immediate. More distant is neurolinguistics (see [40]) studying
human languages and music as they are implemented in the brain in a highly
distributed manner. For their understanding the contribution of the humanities is
essential. I think that Goethe would be happy today.

This essay was almost completed in 2013, when the abstracts of the annual
meeting of the ‘Society of Neuroscience’ (SfN) appeared on the Internet. It will
probably be obsolete before the appearance our book [14]. However, the many
references in my review could be useful for young physicists to overcome their
‘Higgs hangover’. There are wide open spaces in neurobiology where some of the
basic question can be investigated with new techniques and theories, often inspired
by physics. “Why are you still lacing, when others are racing?” (Advertisement for
a Swiss ski boot, when laces became obsolete).

Acknowledgements I am grateful to my colleagues in the Physics Department of the ETHZ, Jürg
Fröhlich, Hans-Ruedi Ott and Thomas Schulthess, for listening to my concerns about the BBP. I
have learnt most about neuroscience from the late neurologist Volker Henn and from collaborations
in the Institute of Neuroinformatics in Zürich. Constructive remarks by Pascal Fries and Kevan
Martin have been very helpful, but all misrepresentations are mine.

References

1. Aaronson, S.: Quantum Computing Since Democritus. Cambridge University Press,
Cambridge (2013)

2. Adrian, E.D.: Olfactory reactions in the brain of the hedgehog. J. Physiol. 100, 459–473
(1942)

3. Ainsworth, et al.: Rates and rhythms: a synergistic view of frequency and temporal coding in
neuronal networks. Neuron 75, 572–583 (2012)

4. Alberts, B., et al.: Molecular Biology of the Cell, 5th edn. Garland, New York (2008)
5. Alivisatos, A.P., et al.: The brain activity map. Science 339, 2084–2085 (2013)
6. Alonso, J.-M., Chen, Y.: Receptive field. Scholarpedia 4(1), 5393 (2009)
7. Anastassiou, C.A., et al.: Ephaptic coupling of cortical neurons. Nat. Neurosci. 14, 217–223

(2011)
8. Bardeen, J., et al.: Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)



252 K. Hepp

9. Barone, P., et al.: Laminar distribution of neurons in extrastriate areas projecting to visual
areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance
rule. J. Neurosci. 20, 3263–3281 (2000)

10. Bastos, A.M., et al.: Visual areas exert feedforeward and feedback influences through distinct
frequency channels. Neuron 85, 1–12 (2015)

11. Bastos, A.M., et al.: Communication through coherence with interareal delays. Curr. Opin.
Neurobiol. 31, 173–180 (2015)

12. Berényi, A., et al.: Large scale, high density (up to 512 channels) recording of local circuits
in behaving animals. J. Neurophysiol. 111, 1132–1143 (2013)

13. Bichot, N.P., et al.: Parallel and serial mechanisms for visual search in macaque area V4.
Science 308, 529–534 (2005)

14. Blanchard, P., Fröhlich, J.: Message from Quantum Science. Springer, Heidelberg (2015)
15. Borjigin, J., et al.: Surge of neurophysiological coherence and connectivity in the dying brain.

Proc. Natl. Acad. Sci. 110, 14432–14437 (2013)
16. Bosman, C.A., et al.: Attentional stimulus selection through selective synchronization

between monkey visual areas. Neuron 75, 875–888 (2012)
17. Buffalo, E.A., et al.: A backward progression of attentional effects in the ventral stream. Proc.

Natl. Acad. Sci. 107, 361–367 (2010)
18. Buffalo, E.A., et al.: Laminar differences in gamma and alpha coherence in the ventral stream.

Proc. Natl. Acad. Sci. 108, 11262–11267 (2011)
19. Burns, S.P., et al.: Is gamma-band activity in the local field potential of V1 cortex a “clock”

or “filtered noise”? J. Neurosci. 31, 9658–9664 (2011)
20. Buschman, T.J., Miller, E.K.: Top-down versus bottom-up control of attention in the

prefrontal and posterior parietal cortices. Science 315, 1860–1862 (2007)
21. Buzsaki, G.: Hippocampus. Scholarpedia 6(1), 1468 (2011)
22. Buzsaki, G., Wang, X.-J.: Mechanisms of gamma oscillation. Ann. Rev. Neurosci. 35, 203–

225 (2012)
23. Carandini, M.: Area V1. Scholarpedia 7(7), 12105 (2012)
24. Cardin, J.A., et al.: Driving fast-spiking cells induces gamma rhythm and controls sensory

responses. Nature 459, 663–666 (2009)
25. Carnevale, N.T., Hines, M.L.: The NEURON Book. Cambridge University Press, Cambridge

(2006)
26. Chalk, M., et al.: Attention reduces stimulus-driven gamma frequency oscillations and spike-

field coherence in V1. Neuron 66, 114–125 (2010)
27. Courtin, J., et al.: Prefrontal parvalbumin interneurons shape neuronal activity to drive fear

expression. Nature 505, 92–96 (2014)
28. Da Costa, N.M., Martin, K.A.C.: Sparse reconstructions of brain circuits: or, how to survive

without a microscopic connectome. NeuroImage 80, 27–36 (2013)
29. Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum information: an

outlook. Science 339, 1169–1174 (2013)
30. DiCarlo, J.J., et al.: How does the brain solve visual object recognition? Neuron 73, 415–434

(2012)
31. Douglas, R.J., Martin, K.A.: Neural circuits of the neocortex. Ann. Rev. Neurosci. 27, 419–

451 (2004)
32. Eckhorn, R., et al.: Coherent oscillations: a mechanism of feature linking in the visual cortex?

Biol. Cybern. 60, 121–130 (1988)
33. El-Shamayleh, Y., et al.: Visual response properties of V1 neurons projecting to V2 in

macaque. J. Neurosci. 33, 16594–16605 (2013)
34. Engelhard, B., et al.: Inducing gamma oscillations and precise spike synchrony by operant

conditioning via brain-machine interface. Neuron 77, 361–375 (2013)
35. ETH Board Blue Brain Project: Internationale Begutachtung www.ethrat.ch/en/node/1361

(2013)
36. Fenno, L., et al.: The development and application of optogenetics. Ann. Rev. Neurosci. 35,

389–412 (2011)



10 Computation Through Neuronal Oscillations 253

37. Fetz, E.E.: Volitional control of cortical oscillations and synchrony. Neuron 77, 216–218
(2013)

38. Findlay, J., Walker, R.: Human saccadic eye movements. Scholarpedia 7(7), 5095 (2012)
39. Freund, T., Kali, S.: Interneurons. Scholarpedia 3(9), 4720 (2008)
40. Friederici, A.D.: The brain basis of language: from structure to function. Physiol. Rev. 91,

1357–1392 (2011)
41. Fries, P.: Modulation of oscillatory neuronal synchronization by selective visual attention.

Science 291, 1560–1563 (2001)
42. Fries, P.: A mechanism for cognitive dynamics: neuronal communication through neuronal

coherence. Trends Cogn. Sci. 9, 474–480 (2005)
43. Fries, P., et al.: The effects of visual stimulation and selective visual attention on rhythmic

neuronal synchronization in macaque area V4. J. Neurosci. 28, 4823–4835 (2008)
44. Friston, K.J., et al.: DCM for complex-valued data: cross spectra, coherence and phase delays.

NeuroImage 59, 439–455 (2012)
45. Gaillard, R., et al.: Converging intracranial markers of conscious access. PLoS Biol. 7,

e1000061 (2009)
46. Gray, C.M., Singer, W.: Stimulus-specific neuronal oscillations in the cat visual cortex: a

cortical functional unit. SfN Abstr. 13, 404.3 (1987)
47. Gregoriou, G.G., et al.: High-frequency, long-range coupling between prefrontal and visual

cortex during attention. Science 324, 1207–1210 (2009)
48. Gregoriou, G.G., et al.: Cell-type-specific synchronization of neural activity in FEF with V4

during attention. Neuron 73, 581–594 (2012)
49. Grothe, I., et al.: Switching neuronal inputs by differential modulations of gamma-band

phase-coherence. J. Neurosci. 32, 16172–16180 (2012)
50. Hameroff, S., Penrose, R.: Conciousness in the universe: A review of the ‘Orch OR’ theory.

Phys. Life Rev. 11, 39–78 (2013)
51. Helmstaedter, M., et al.: Connectomic reconstruction of the inner plexiform layer in the mouse

retina. Nature 500, 168–174 (2013)
52. Hepp, K.: Two models for Josephson oscillators. Ann. Phys. 90, 285–294 (1975)
53. Hepp, K.: Coherence and decoherence in the brain. J. Math. Phys. 53, 095222 (2012)
54. Hill, S.L., et al.: Statistical connectivity provides a sufficient foundation for specific functional

connectivity in neocortical neural microcircuits. Proc. Natl. Acad. Sci. 109, 16772–16773
(2012)

55. Histed, M.H., Maunsell, J.H.R.: Cortical neural populations can guide behavior by integrating
inputs linearly, independent of synchrony. Proc. Natl. Acad. Sci. 111, E178–E187 (2013)

56. James, W.: The Principles of Psychology, p 403. H. Holt, New York (1890)
57. Jia, X., et al.: Stimulus selectivity and spatial coherence of gamma components of the local

field potential. J. Neurosci. 31, 9390–9403 (2011)
58. Jia, X., et al.: No consistent relationship between gamma power and peak frequency in

macaque primary visual cortex. J. Neurosci. 33, 17–25 (2013)
59. Jia, X., et al.: Gamma and the coordination of spiking in early visual cortex. Neuron 77,

762–774 (2013)
60. Josephson, B.: Possible new effects in superconductive tunneling. Phys. Lett. 1, 251–253

(1962)
61. Kajikawa, Y., Schroeder, C.E.: How local is the local field potential? Neuron 72, 847–858

(2011)
62. Kandel, E.R., et al.: Principles of Neural Science, 5th edn. McGraw-Hill, New York (2013)
63. Katzner, S., et al.: Local origin of field potentials in visual cortex. Neuron 61, 35–41 (2009)
64. Khawaja, F.A., et al.: Pattern motion selectivity of spiking outputs and local field potentials

in macaque visual cortex. J. Neurosci. 29, 13702–13709 (2009)
65. Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford

University Press, New York (1999)
66. Koch, C., Hepp, K.: Quantum mechanics in the brain. Nature 440, 611–612 (2006)



254 K. Hepp

67. Koch, C., Hepp, K.: In: Chiao, R.J., Cohen, M.L., Legget, A.J., Phillips, W.D., Harper, jr
C.L. (eds.) Visions of Discovery: New Light on Physics, Cosmology, and Consciousness.
Cambridge University Press, Cambridge (2011)

68. Kreiter, A.K., Singer, W.: Stimulus-dependent synchronization of neuronal responses in the
visual cortex of the awake macaque monkey. J Neurosci. 16, 2381–2396 (1996)

69. Lashgari, R., et al.: Response properties of local field potentials and neighboring single
neurons in awake primary visual cortex. J. Neurosci. 32, 11396–11413 (2012)

70. Lepousez, G., Lledo, P.-M.: Odor discrimination requires proper olfactory fast oscillations in
awake mice. Neuron 80, 1–15 (2013)

71. Lewis, D.A.: Inhibitory neurons in human cortical circuits: Substrate for cognitive dysfunc-
tion in schizophrenia. Curr. Opin. Neurobiol. 26, 22–26 (2014)

72. Lima, B., et al.: Synchronization dynamics in response to plaid stimuli in monkey V1. Cereb.
Cortex 20, 1556–1573 (2010)

73. Lucero, E., et al.: Computing prime factors with a Josephson phase qubit quantum processor.
Nat. Phys. 8, 719–723 (2012)

74. Markov, T., et al.: A weighted and directed interareal connectivity matrix for macaque cerebral
cortex. Cereb. Cortex 24, 17–36 (2013)

75. Markov, T., et al.: The anatomy of hierarchy: feedforward and feedback pathways in macaque
visual cortex. J. Comp. Neurol. 522, 225–259 (2013)

76. Markov, T., et al.: Cortical high-density counterstream architectures. Science 342, 1238406
(2013)

77. Markram, H.: The blue brain project. Nat. Rev. Neurosci. 7, 153–160 (2006)
78. Marshall, L., et al.: Boosting slow oscillations during sleep potentiates memory. Nature 444,

610–613 (2006)
79. Miller, E.K., Buschman, T.J.: Cortical circuits for the control of attention. Curr. Opin.

Neurobiol. 23, 216–222 (2013)
80. Moratti, S., et al.: Dynamic gamma frequency feedback coupling between higher and lower

order visual cortex underlies perceptual completion in humans. Neuroimage 86, 470–479
(2013)

81. Murthy, V.N., Fetz, E.E.: Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of
awake behaving monkeys. Proc. Natl. Acad. Sci. 89, 5670–5674 (1992)

82. Nicolic, D., et al.: Gamma oscillations: precise temporal coordination without a metronome.
Trends Cogn. Sci. 17, 54–55 (2013)

83. Palanca, B.J.A., DeAngelis, G.C.: Does neural synchrony underlie visual feature grouping?
Neuron 46, 333–346 (2005)

84. Pannasch, U., Rouach, N.: Emerging role for astroglial networks in information processing:
from synapse to behavior. Trends Neurosci. 36, 405–417 (2013)

85. Poggio, T., Serre, T.: Models of visual cortex. Scholarpedia 8(4), 3516 (2013)
86. Ray, S., Maunsell, J.H.R.: Differences in gamma frequencies across visual cortex restrict their

possible use in computation. Neuron 67, 885–898 (2010)
87. Rey, H.G., et al.: Timing of single-neuron and local field potential responses in the human

medial temporal lobe. Curr. Biol. 24, 299–304 (2014)
88. Reimann, M.W., et al.: A biophysically detailed model of neocortical LFPs predicts the critical

role of active membrane currents. Neuron 79, 375–390 (2013)
89. Roberts, M.J., et al.: Robust gamma coherence between macaque V1 and V2 by dynamic

frequency matching. Neuron 78, 523–536 (2013)
90. Roelfsema, P.R., et al.: Synchrony and covariation of firing rates in the primary visual cortex

during contour grouping. Nat. Neurosci. 7, 982–991 (2004)
91. Roelfsema, P.R., et al.: Alpha and gamma oscillations as markers of feedforward and feedback

processing in areas V1 and V4 of monkey visual cortex. SfN Abstr. 1, 623.03 (2012)
92. Saalmann, Y.B., et al.: The Pulvinar regulates information transmission between cortical areas

on attention demands. Science 337, 753–756 (2012)
93. Schafer, R.J., et al.: Visual and attentional functions of the lateral pulvinar. SfN Abstr. 673.10

(2012)



10 Computation Through Neuronal Oscillations 255

94. Seung, S.: I am my connectome (2010). Video on TED.com
95. Shafranjuk, S.E., Ketterson, J.B.: Principles of josepson-junction-based quantum computa-

tion. In: Bennemann, K.H., Ketterson, J.B., (eds.) Superconductivity, vol 1. Spinger, Berlin
(2008)

96. Shadlen, M.N., Movshon, J.A.: Synchrony unbound: a critical evaluation of the temporal
binding hypothesis. Neuron 24, 67–77 (1999)

97. Shepherd, G., (ed.): The Synaptic Organization of the Brain. Oxford University Press, Oxford
(2004)

98. Shimamoto, S.A., et al.: Subthalamic nucleus neurons are sychronized to primary motor
cortex local field potentials in Parkinson’s disease. J. Neurosci. 33, 7220–7233 (2013)

99. Singer, W.: Time as coding space in neocortical processing: a hypothesis. In: Gazzaniga, M.S.
(ed.) The Cognitive Neurosciences, pp. 91–104. MIT, Cambridge, MA (1997)

100. Singer, W.: Binding by synchrony. Scholarpedia 2(12), 1657 (2007)
101. Spaak, E., et al.: Layer-specific entrainment of gamma-band neural activity by the alpha

rhythm in monkey visual cortex. Curr. Biol. 22, 2313–2318 (2012)
102. Spruston, N.: Pyramidal neuron. Scholarpedia 4(5), 6130 (2009)
103. Squire, L.R., et al.: Fundamental Neuroscience. Elsevier, Amsterdam (2013)
104. Squire, R.F., et al.: Frontal eye field. Scholarpedia 7(10), 5341 (2012)
105. Tegmark, M.: Importance of quantum decoherence in brain processes. Phys. Rev. E 61, 4194–

4206 (2000)
106. Thiele, A., Stoner, G.: Neuronal synchrony does not correlate with motion coherence in

cortical area MT. Nature 421, 366–370 (2003)
107. Traub, R.D., et al.: Single-column thalamocortical network model exhibiting gamma oscilla-

tions, sleep spindles, and epileptogenic bursts. J. Neurophysiol. 93, 2194–2232 (2005)
108. Van Kerkoerle, et al.: Alpha and gamma oscillations characterize feedback and feedforeward

processing in monkey visual cortex. Proc. Natl. Acad. Sci. 111, 14332–14341 (2014)
109. Vezoli, J., et al.: Extracting structure from function: Inter-areal causal interactions at gamma

and beta rhythms reveal cortical hierarchical relationships. SfN Abstr. 723.10 (2012)
110. Vinck, M., et al.: Attentional modulation of cell-class-specific gamma-band synchronization

in awake monkey area V4. Neuron 80, 1077–1089 (2013)
111. Von der Malsburg, C.: The correlation theory of brain function. In: Domany, E., Van Hemmen,

J.L., Schulten, K. (eds.) MPI Biophysical Chemistry, Internal Report 81-2. Reprinted in
Models of Neural Networks II (1994). Spinger, Berlin (1981)

112. Wang, X.-J.: Neurophysiological and computational principles of cortical rhythms in cogni-
tion. Physiol. Rev. 90, 1195–1268 (2010)

113. Womelsdorf, T., et al.: Gamma-band synchronization in visual cortex predicts speed of change
detection. Nature 439, 733–736 (2006)

114. Womelsdorf, T., et al.: Modulation of neuronal interactions through neuronal synchronization.
Science 316, 1609–1612 (2007)

115. Xing, D., et al.: Stochastic generation of gamma band activity in the primary visual cortex of
awake and anesthetized monkeys. J. Neurosci. 32, 13873–13880 (2012)



Chapter 11
Local Properties, Growth and Transport
of Entanglement

Roland Omnès

11.1 Introduction

To describe the nature of entanglement, Schrödinger considered as an example the
case of two quantum systemsA andB , initially independent, which begin to interact
at some time and separate again after some more time [1]. BothA andB are initially
in a pure state but, whereas this is still true of the compound system AB after
their interaction, it is no more true for each one of them separately. Schrödinger
viewed this property of lasting entanglement between wave functions as the most
characteristic aspect of quantum mechanics, which estranges it farther from classical
physics than anything else and leads finally to a famous contradiction between the
quantum principles and the uniqueness of measurement data [2].

A peculiarity of entanglement is to be an intrinsic property of the state of a
compound system (an eigenfunction of the density matrix �AB is not a product of an
eigenfunction of �A and an eigenfunction of �B/. This feature distinguishes entan-
glement from the “physical properties”, which were associated by von Neumann
with projection operators in Hilbert space and, on the contrary, tended to diminish
the gap between classical and quantum physics [3]. This is probably the main reason
why some apparently natural questions become so obscure when entanglement is
concerned, such as asking if entanglement can grow as time goes on and reach wider
regions, or whether one can give a measure for the amount of entanglement between
two distant subsystems sharing interactions with a third one (see for instance [4]).

This type of question will be the topic of the present discussion. One will
deal with the locality, growth and transport of entanglement, as well as with
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local measures of its amount, but not through usual approaches using Schmidt
factorization [5] or algorithmic entropy, which has too strong limitations [4, 6].

The first step, introduced in Sect. 11.2, consists in pointing out a topological and
dynamical character of entanglement, rather than dealing only with sums of tensor
products of some state vectors, which is its the usual expression of entanglement
and remains purely algebraic. This new approach is explained for convenience in
a case where System A is an energetic alpha particle and System B a Geiger
counter containing an argon gas. Using Feynman histories or perturbation theory,
one notices that the property of some atom in B to be already entangled (or not
yet entangled) with A at some time t has a topological meaning in terms of graphs.
As a matter of fact, it refers to some clustering between this atom and the alpha
particle A, which occurred (or did not occur) before time t in some histories or
some perturbation graphs [7–11].

This recognition of a topological character of entanglement is used in Sect. 11.3
to rid it from an apparent restriction to perturbation theory and express it through
a convenient refinement of the Schrödinger equation, in which the partial and local
characters of entanglement are taken into account. This is indeed a refinement and
not a modification because it does not imply any change in standard wave functions
and only recognition of the presence of more information in their mathematical
expressions as functions of atoms positions. The corresponding mathematical
aspects are considered in Sect. 11.4. The approach is then extended to quantum
fields in Sect. 11.5, to make clear both its generality when dealing with quantum
measurements and its restriction to non-relativistic and macroscopic measuring
devices.

This approach through field theory provides in a rather simple way a local
“measure of entanglement” f1.x; t/, expressing explicitly the relative amount of
entanglement at time t in a small macroscopic space region around a point x.
Using this macroscopic meaning together with standard arguments from kinetic
physics, one shows then in Sect. 11.6 that f1.x; t/ satisfies a rather simple nonlinear
partial differential equation, which is solved in special cases. The most remarkable
consequence of non-linearity is that entanglement grows behind the front of a
wave moving at a computable velocity and extending from the region in which the
A � B interactions occurred. Finally, some possible consequences, including some
already proposed earlier in terms of algorithmic entropy [12], are briefly indicated
in Sect. 11.8.

11.2 A Topological Aspect of Entanglement

One will deal mostly with the case of an alpha particle A having a straight-line
trajectory and entering into the Geiger counter B at some time 0 Fig. 11.1 shows a
perturbation graph for the events occurring inside the detector before some time t .
The same figure could represent as well a Feynman history during the same interval
of time, except that the straight lines representing propagation of the alpha particle
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Fig. 11.1 The clustering
topology of entanglement

and of the argon atoms would have to be highly wiggling. The heavy horizontal line
represents propagation of the alpha particle and the light horizontal lines represent
propagation of atoms. We assume that all the interactions are governed by potentials
with a very short range for a pair of argon atoms and a less short range for the alpha-
atom interactions, these interactions being represented by vertical lines.

No explicit calculation is needed to see that, in this graph, some atoms have
become entangled with A at time t because they interacted directly with A or
they interacted with an atom that had already interacted with A previously, or they
interacted with an atom that had interacted with an atom that had interacted, and so
on. In Fig. 11.1, the atom denoted by a is not entangled with the alpha particle A at
time t , according to this graph.

This rather trivial expression of entanglement has several significant conse-
quences. First of all, it is clearly a topological property, either of perturbation graphs
or of Feynman histories. Secondly, it shows that the mechanism of entanglement is
very similar to a contagion: an atom can catch entanglement directly from the alpha
particle, but it can also catch it from an already entangled atom.

This topology of entanglement can also be viewed as a form of clustering if one
considers that the set of entangled particles constitutes a cluster in the sense of graph
theory. In that sense, the idea is not new and it already occurred in other domains
of physics where it played a significant part. It first occurred in quantum statistical
physics where it was used to establish the proportionality to volume of extensive
thermodynamic quantities [7, 8]. It occurred also in S -matrix theory [9] where it
was often expressed intuitively as the property according to which an experiment in
Geneva is insensitive to another experiment in Brookhaven. Here it would mean that
an atom that is far enough from the alpha track will feel very little influence from
the alpha particle, at least for some time. The formulation these cluster properties
has also been thoroughly expressed in Weinberg’s book on quantum field theory
[10], where it is used as a basic property in the construction of effective quantum
fields. One encounters also some other forms of clustering in the scattering theory
of several particles [11].

One could be tempted to give a special name to these local and topological
properties of entanglement, which are familiar to everybody. The name “intricacy”,
for instance, would seem proper, but it could also become more an impediment than
a help in a first introduction and we shall therefore keep the name of “entanglement”
with a slightly refined meaning.
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11.3 A Schrödinger Equation for Local Entanglement

Although the notion of entanglement is best understood by means of perturbation
theory, it is not restricted to this framework and can be cast directly into the wider
one of Schrödinger equations.

Beforehand, one will fix notations and make the model more precise. One
denotes by y the position of the alpha particle, including tacitly in this notation
a spin index to get a shorter notation [13]. One denotes by N he total number of
argon atoms. These atoms are distinguished by an index n going from 1 to N , the
position of an atom is denoted by xn and the set of all these positions (i.e., a point
in the configuration space) is denoted simply by x. The initial state of the alpha
particle is supposed a pure state with wave function �.y/. The initial state of the
Geiger counter B , which is necessarily mixed, is expressed by a density matrix �B
and one will concentrate on one of its eigenfunctions, denoted by  .x/. Initially,
the A � B state under consideration is therefore

‰.x; yI 0/ D  .xI 0/�.yI 0/: (11.1)

Its evolution is governed by the Schrödinger equation

i„d‰=dt D .KA CKB C U C V /‰; (11.2)

whereKA andKB denote the kinetic energies of the alpha particle and of the argon
atoms. For the time being, we assume that all the interactions can be represented
by a potential so that the potential U is a sum of interactions of the alpha particle
with the various atoms, and V is the sum of potential interactions between pairs of
atoms. Distinguishing these atoms by an index n, one has:

U D
X

n
U.y; xn/; V D

X

.n;n0/
V .xn; xn0/: (11.3)

We must now describe individual entanglement of atoms and, labeling an atom
by a label n, one introduces an entanglement index taking the value 1 (in the case
of entanglement) or 0 (in the case of no entanglement). Perturbation theory showed
that the direct generation of entanglement by the alpha particle leads to a change of
index 0 ! 1. An interaction between two atoms leads to the possible changes 00
!00, 01 ! 11, 10 ! 11 or 11 ! 11, and all these transitions can be expressed by
using 2 � 2 matrices

Pn0 D
�
0 0

0 1

�

; Pn1 D
�
1 0

0 0

�

; Sn D
�
0 1

0 0

�

(11.4)

Pn0 and Pn1 are projection operators conserving respectively a state of
non-entanglement or of entanglement whereas Sn brings a state with no
entanglement into an entangled state. These are the only such operators we need
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because the entanglement of one atom is obtained irreversibly under an interaction,
so that although Sn is not hermitian, its hermitian conjugate can never occur in
an history of entanglement. These matrices could also be written in terms of Pauli
matrices (dropping the index n/ by

P0 D .I � �z/=2; P1 D .I C �z/=2; S D �DC .�x C i�y/=2 (11.5)

Using again perturbation theory, one can express algebraically the generation
and contagion of entanglement by means of a simple replacement in the potentials
insuring automatically these properties, namely for generation:

U.y; xn/ ! Un � U.y; xn/ An; with An D .SnPn0 C Pn1/: (11.6)

The first term in the 2� 2 matrix An describes the generation of entanglement from
a non-entangled atom n, which is recognized as non-entangled by Pn0, and brought
to entanglement by Sn. The second term expresses that, when the alpha particle
interacts with an already entangled atom, it conserves this entanglement, recognized
and maintained by Pn1.

The conservation or contagion of entanglements in the interaction of two atoms
nand n’ is similarly expressed algebraically through the replacement

V.xn; xn0/ ! Vnn0 � V.xn; xn0/ Onn0 I (11.7)

with Onn0 D Pn0 ˝ Pn00 C Pn1 ˝ Pn01 C SnPn0 ˝ Pn01 C Pn1 ˝ Sn0Pn00

(11.8)

It becomes clear then that the evolution of entanglement is not intrinsically linked
with perturbation theory but has a wider meaning. The first step along that direction
consists in characterizing the state of entanglement for the N atoms by strings q
consisting of N bits of entanglement indices having the value 0 or 1. There are 2N

such strings. To each string, one associates a wave function ˆq.x, y; t/. The set of
these wave functions can be considered as a 2N -dimensional vectorˆ depending on
(x, y, t/ for which one writes down an evolution equation

i„dˆ=dt D H 0ˆ: (11.9)

This evolution expresses the evolution of the wave functions ˆq as well as
generation and contagion of entanglement or, more explicitly

i„dˆq=dt D .KA CKB/ˆq C
X

q0

.U qq0 C Vqq0/ˆq0 ; (11.10)

with the notations

KA D �.„2r2
y/=2mA;KB D �

X

n
„2r2

xn
=2ma;

Uqq0 D
X

n
UnI

.n/

qq0 ;Vqq0 D
X

nn0

Vnn0I
.nn0/

qq0 : (11.11)
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In these formulas, the matrix I
.n/

qq0 acts through the 2 � 2 matrix An on the
entanglement index  of atom n and does not affect the entanglement indices of

other atoms, which are therefore the same inˆq andˆq0 Similarly, the matrix I .nn0/

qq0

acts through the 4 � 4 matrix Onn0 on the entanglement indices of the pair of atoms
(nn’) and does not affect the entanglement of other atoms.

The set of equations (11.10) is of course still more involved than the standard
Schrödinger equation (11.2), since it contains in principle more information. The
differential matrix operator H ’ in (11.9) is not self-adjoint, because the generation
and the contagion of entanglement are not time-reversible. Nevertheless, if one
assumes convenient bounds on the potentials and their derivatives, Eq. (11.9) has
essentially the same existence properties as the Schrödinger equation (11.2), as can
be shown for instance by microlocal analysis [14].

To understand better the relation between this detailed description of entangle-
ment and the global one in the Schrödinger equation (11.2), one notices that the
action of a matrix An in (11.12) brings out always an entangled state of atom n,
whatever could have been the previous state of entanglement of this atom. More
generally, if one introduces a 2N�2N matrix … as the tensor product of the N
matrices An:

… D
Y˝

n
An; (11.12)

the action of this matrix on any string q of entanglement indices brings it onto the
string of complete entanglement q0 D .1111111: : :/. If one defines therefore the
Schrödinger wave function by

‰q0 D …ˆ; (11.13)

one finds that this function satisfies the standard evolution (11.2) as a consequence
of (11.9). In terms of wave functions, the relation (11.13) is of course equivalent to
‰ D P

q ˆq .
To conclude on this point, one may say that a rather detailed description of the

generation and contagion of entanglement is perfectly compatible with the quantum
principles. One can also add a last remark concerning indistinguishable atoms. The
argon atoms in our example are indistinguishable and the Schrödinger wave function
‰ is therefore invariant under their permutations. In place of the 2N functions ˆq ,
one can deal therefore with a set of N C 1 functions„r.r D 0; 1; : : :; N / in which
r atoms are entangled with the alpha particle and N � r are not. Such a function is
symmetric under permutations of the entangled atoms as well as under permutations
of the non-entangled atoms. One has furthermore in that case

‰ D
X

r
„r : (11.14)
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11.4 Some Mathematical Aspects of the Construction

It could seem at first sight that this refinement in the idea of entanglement goes
against the familiar Hilbert space formulation of quantum mechanics. This is not so
however and the present idea is presumably a special case of a wider one, which
would be that there is more in wave functions and the details of their evolution
than in the algebra of Hilbert space. The local properties of entanglement and
their evolution would probably appear more obvious if one could actually perform
explicit computations for a large system and look at a wave function in detail at
every step of its evolution. One will try briefly to say a little more on that point now.

It will be convenient to consider this question in the case of the symmetric
functions „j . The evolution equation (11.9) is linear and one can therefore
formulate it by means of some vector spaces. One may consider for instance that a
wave function„j . is associated abstractly with a vector j„ri in a Hilbert space Er
Two different such spaces, corresponding to different steps of entanglement r ¤ r 0,
are not orthogonal usually (h„r j „r 0i does not generally vanish). The set E 0 of
these N vector spaces could be considered as a sheaf in the sense of sheaves theory
[15], but it would not be of great help and one could consider it rather as a vector
space E by allowing addition between vectors j„ri belonging to different spaces
Er , as in (11.14).

But the algebraic meaning of this summation needs more attention. Every Hilbert
space Er is isomorphic to the standard Hilbert space E to which the standard wave
function ‰ in (11.2) belongs. Said otherwise, Er is a copy of E: Every Er is
therefore a Hilbert space by itself, but two of them are not intrinsically related.
All these vector spaces have only the vector zero in common and this meeting
point is significant: The evolution equation (11.9) is continuous in time. At time 0
before entanglement, there is only a state vector j„0i with r D 0. The evolution of
entanglement under (11.9) goes always later on through the birth of more and more
new levels of r , starting at an infinitesimal level during an infinitesimal lapse of time
from a lower level of r: One can expect that after enough time (to be considered
in Sect. 11.6), a completely entangled state j„N i will survive alone and evolve
according to the standard Schrödinger equation.

The Hilbert space EN appears then as a reference in the process of evolution in
entanglement and the geometric meaning of (11.14) consist then in projecting all
the vector spaces Er on EN by means of the matrix A, and thus regaining explicitly
the standard Hilbert space formulation of quantum mechanics.

The process is not reversible on the other hand: One cannot construct the
functions in the sheaf E 0 from the function‰ by means of projection operators
in the standard Hilbert space E , which means that the development of entangle-
ment cannot be considered as a Von Neumann’s “physical property” [3]. This
development belongs to the history of ‰ and not on its value ‰.t/ at a specific
time t . Whether or not this feature might call attention to a comparison between
the respective meanings of Feynman histories and of the Heisenberg–Schrödinger
formulation of quantum mechanics could be a subject of more reflection, but I shall
not venture along that direction.
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11.5 An Approach Using Quantum Field Theory

Two points need further consideration in the previous discussion: The first one is a
more explicit account for the evolution of entanglement among undistinguishable
atoms. The second one is concerned with a measure of entanglement: The idea
of a probability of entanglement for a specific atom is neither of much practical
nor of conceptual interest. One would be much more interested in getting local
properties of entanglement. For instance, one would like to dispose of a measure
of entanglement for all the atoms in some region of space inside a detector. One
expects that, when an alpha particle has just crossed rapidly the gas, there is much
more entanglement near its track than farther away. On the other hand, the growth
of clustering with time must imply that, gradually, the gas becomes more entangled
until entanglement with A is complete. One would like to make these features more
precise.

These questions are directly concerned with locality and they become clearer
when the framework of quantum field theory is used [13]. To begin with, we shall
still ignore entanglement and recall a few points concerning this approach: The
atoms are described by a field '.x/ where the notation x involves again the position
of an atom and eventual spin indices. The field satisfies either commutation or anti-
commutation properties according to the spin value, but the two cases are very
similar and we shall retain only for illustration the case of Bose–Einstein statistics,
with commutation relations

Œ'.x/; '.x0/� D 0 Œ'.x/; '�.x0/� D ı.x � x0/: (11.15)

Denoting the vacuum state byj0i, a state of the gas withN atoms with wave function
 ({x}) is given by the expression

j i D
Z

fdxg .fx/
YN

ND1 �
�.xr / j0i : (11.16)

(Notice the difference between the notation x for localization of the field '.x/ and
the notation {x} for all the variables in the wave function.)

The Hamiltonian de is given by

H D
Z

dx'�.x/.�r2=2m/'.x/ (11.17)

C .1=2/

Z

dxdx0'�.x/'�.x0/V .x; x0/'.x/'.x0/;

where the factor 1/2 in the last term is due to the fact that a pair of atoms with
positions x and x0 occurs twice in this expression with the orderings (x; x0/ and
(x0, x/.
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To describe entanglement, one introduces two fields '0.x/ and '1.x/, standing
respectively for no entanglement and entanglement. Both of them, together with
the adjoint fields, satisfy the commutation relations (11.15) and moreover commute
together and with the adjoint fields (for instance:Œ'0.x/; '

�
1 .x
0/� D 0/. The evolution

operator is thenH0CH1CH01CD0CD1 where in this sum,H0 andH1 represent
the independent evolutions of non-entangled and entangled atoms; they have the
same form as (11.17) after a convenient replacement of '.x/ by '0.x/ or '1.x/.
The couplingH01 represents the contagion of entanglement is given by

H01 D
Z

dxdx0'�1.x/'
�
1.x
0/V .x; x0/'0.x/'1.x0/: (11.18)

The generation of entanglement by the alpha particle and its absence of renewal
when the alpha particle interacts again with an already entangled atom are described
respectively by the two terms D0 and D1. They involve a field ˛.y/ describing the
alpha particle and are given by

D0 D
Z

dxdy˛�.y/'�1.x/U.x; y/˛.y/'0.x/; (11.19)

D1 D
Z

dxdy˛�.y/'�1.x/U.x; y/˛.y/'1.x/: (11.20)

We shall not write down explicitly the corresponding evolution equations for the
set of wave functions {„} and only add a comment: Whereas the relation between
the set of entangled wave functions „r.t/ and the standard wave function ‰.t/
is trivial, since it amounts to a summation, there is no simple relation between
'.x/ and the pair of fields '0.x/ and '1.x/. This may be interpreted as a warning:
Apparently, and as could have been expected, the existence of local properties of
entanglement is closely linked with the consideration of macroscopic objects, whose
elements behave in a non-relativistic way in a reference frame. This is by of course
in agreement with the relation of the growth and transport of entanglement with
kinetic physics, which will be considered in the next section. Whether or not there
could be a wider theoretical framework allowing an extension of these methods is
another question and we shall not try to look for it presently.

A great power of the field approach is nevertheless its flexibility: It applies to
every kind of particles, either fermions or bosons, to systems containing a unique
species of atoms or different species, to relativistic as well as non-relativistic
behavior for the measured quantum systems. Whereas the approach in Sect. 11.3
holds when all the atoms in the detector are in their ground state, the present
approach works also when there are excited states, ions, free electrons or photons.
In a solid system or subsystem, one can use again fields to describe phonons or
conducting electrons. In that sense, one may presume that an approach, in which
entanglement is considered as a topological clustering property has a much wider
validity domain than can be explored in the present first encounter.
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11.6 Growth and Transport of Entanglement

As a next step, we shall go from the quantum description of entanglement to its
macroscopic behavior implying local growth and transport inside the detector B:
It will be convenient for this purpose to cover B by a set of macroscopic (though
rather small) Gibbs cells Cˇ. Denoting by x the center of one of these cells, by Vˇ
its volume, by �ˇ the corresponding density matrix and by n the average number of
atoms per unit volume, one can define two local measures for entanglement f1.x/
and for no entanglement f0.x/ through

fj .x/ D .nVˇ/
�1
Z

Cˇ

T rf�ˇ'�j .y/'j .y/gd3y; (11.21)

with j equal to 1 or 0.
These quantities are positive. We shall assume furthermore that they satisfy the

relation

f1.x/C f0.x/ D 1: (11.22)

Notice however that a justification of this equation is typical of the gap existing
between kinetic theory and fundamental quantum theory. The evolution operator
H0 CH1 CH01 CD0 CD1 in the previous section commutes with the sum

Z

B

dxf'�1.x/'1.x/C '
�
2.x/'2.x/g; (11.23)

so that the sum of average numbers of entangled and of non-entangled atoms in
the detector is a constant of motion, equal to the total number N of atoms. But the
postulated equation (11.22) assumes a similar conservation in every Gibbs cell, i.e.,
at a local level. It is suggested by the short range of interactions and can be expected
to be valid, up to small fluctuations, but a rigorous proof is lacking. It can yield on
the other hand quite a few interesting and suggestive consequences, which we now
examine.

When making a transition from quantum elementary effects to a kinetic behavior
at larger scales, one must always rely ultimately on a classical description of
atoms or other carriers undergoing a random motion, whereas elementary exchanges
in transported quantities are derived from quantum mechanics [16]. Although
entanglement is in some sense a paradigm of quantum physics (since it is not
even associated with an observable) its exchange properties are remarkably simple
because of the contagion in these exchanges.

Assuming the gas in the detector at thermal equilibrium with temperature T ,
the average velocity of an atom is v D .3kBT=2m/

1=2. One introduces also the
mean free time 
 and mean free path � D v
 of the atoms. If one considers the
motion of atoms as a random walk, the consideration of entanglement takes two
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significant aspects: On one hand, an entangled atom keeps its entanglement under
collisions with other atoms, whether these atoms are themselves entangled or not.
The corresponding evolution of the measure of entanglement f1.x; t/ is governed
in that case by a diffusion equation

.@f1=@t/diffusion D Dr2f1; (11.24)

where one the diffusion coefficient as given byD D .1=6/�2=
 .
There is in addition a local growth in entanglement. Its probability of occurrence

for an individual non-entangled atom in the cell Cˇ during a short time interval
ıt is f1.x/ıt=
 whereas the measure for these non-entangled atoms is f0.x/.
Since contagion makes such an atom entangled, the corresponding increase in local
entanglement is given by

.@f1=@t/contagion D f1f0=
: (11.25)

When the two effects of diffusion and contagion are put together with account
of the relation (11.22), one obtains a nonlinear partial differential equation for the
evolution of entanglement, which is

@f1=@t D f1.1 � f1/=
 CDr2f1 (11.26)

In principle, one should add a source term in this equation to account for entan-
glement from direct collisions with the alpha particle, but one can leave this effect
out when considering the transport of entanglement at some distance from the alpha
track, or when one looks only for the mathematical consequences of (11.26).

Simple numerical estimates in one dimension show that it would be impossible to
obtain a solution satisfying everywhere the conditions 1 � f1.x; t/ � 0. One needs
therefore boundary conditions for Eq. (11.26) and, fortunately, these conditions
come out easily from the basic property of contagion: In a one-dimensional model
(in which case the thermal velocity is v0 D 3�1=2v/, one notices that after a collision
between an entangled atom and a non-entangled one, both atoms are entangled after
collision and therefore, entanglement is carried away on average in both directions
of positive and negative directions of x at the velocity v0. This is also true in three-
dimensional space where one expects that entanglement is carried away from its
origin (on the alpha track) at the velocity v0 (which coincides with the velocity of
sound in the case of a random walk of atoms for which also D D .1=6/�2=
/.

The corresponding boundary condition is then that f1.x; t/ should vanish outside
a space region including the source of entanglement on the track and having a
boundary moving away from the track at the velocity v’, which is the velocity of
sound. Said otherwise, f1.x; t/ is positive and non-vanishing behind a wave front
moving at that velocity. Farther away, beyond the front,f1.x; t/ must vanish. The
geometric behavior of the contagion of entanglement is therefore very similar to
the behavior of self-maintaining waves, which are known typical of some nonlinear
equations of evolution, as the case is for (11.26) [17].
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11.7 An Example

As an example, one considered a model where the source of entanglement stands
on a plane, located at a large distance on the left (x < 0) and the measure of
entanglement f1.x; t/ behaves accordingly as a function g.x � v0t/, far enough
from this source. Using again the previous conventions, this function should obey
the nonlinear differential equation

3�1=2dg=dz C g.1 � g/C .1=6/d2g=dz2 D 0; (11.27)

where the units of length and time have been taken as the mean free path and
the mean free time of atoms. When the front is at z D 0.i:e:; g.0/ D 0/ and the
boundary condition g.�1/ D 1 is used, the solution of this equation is shown in
Fig. 11.2 (Note: One could get the impression when looking at this figure that g0(0)
vanishes, but the computation gives only a small number g0.0/  �0:06/.

These properties are presumably general, although they would require some
adaptation in various circumstances. When entanglement originates for instance
from an external collision on a solid box enclosing the gas, it must be carried by
phonons and grows initially through phonon-phonon collisions (in which case, it
move again at the velocity of sound). In the case of entanglement for an electric
signal in a conductor, the wave front will move at the Fermi velocity. When
entanglement is carried by photons, the velocity of entanglement waves becomes c.
More cases have been considered and, generally, they suggested combinations
of different waves of entanglement with different heights moving at different
velocities.

In any case, the final outcome will be a complete entanglement after some lapse
of time. Remarkably, this time is not very short and, in the simplest model where

Fig. 11.2 An entanglement wave
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only the motion and collisions of atoms carry the entanglement, it is of order L=v’,
where L denotes the largest dimension of the box enclosing the gas.

11.8 Conclusions and Perspectives

The main conclusion I would be tempted to draw is the probable existence of
a richness of information in the quantum state of a macroscopic system. The
present results, even if partial, show that some of this information is not necessarily
expressible as a mean value of an operator in Hilbert space and, moreover, wave
functions can hold much memory of the past that cannot be extracted by a
measurement, even an ideal one [3].

A different question would be to ask whether this kind of information, which
is accessible in principle to a Turing machine, could be of some consequence for
realistic physical phenomena.

This question leads inevitably to considering quantum measurements, for which
entanglement is so essential that any addition to its understanding could turn out
valuable. As a matter of fact, the past sections dealt with a measurement though a
very special one: a measurement in which the initial state is taken for sure and the
alpha particle has probability 1 for entering the detector and the final outcome is
anyway predictable. A next step must consist obviously in asking what happens if
the initial state of the alpha particle is a superposition

X

j
cj j˛; j i (11.28)

The various channels j in this expression can differ in many ways: They can
represent alpha particle states in which the particle hits the detector at different
places (in which case a bubble chamber or a wire chamber would be more adequate
than a Geiger counter). The particle can also arrive at different times in the different
channels, or there is a mute channel in which it does not enter the detector.
Moreover, the detection device needs not be unique and can involve several detectors
at different places. Although these variants are more or less trivial when seen from
the standpoint of abstract measurement theory, they raise interesting variations when
one tries understanding better the different histories of entanglement in them.

One will not however discuss these alternatives because it would be too long and
a simple reflection using the content of the previous sections is enough for guessing
the results in each case. The main conclusion is quite clear anyway and asserts
that, as long as the measuring device is perfectly isolated, the final state of the
system after a complete evolution of entanglement will coincide with its standard
description [2, 3, 18] and will keep no trace of locality, even in the topology of wave
functions.
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The situation is different however when the existence of an environment for the
system AB is taken into account and there is decoherence. One knows that, basically,
decoherence is a manifestation of entanglement between the AB system and its
environment [19] and the question has been raised whether the conjugation of this
entanglement with the one occurring through measurement in the AB system could
have deep consequences and perhaps as far as leading to collapse [12, 20].

In Zurek’s proposal of Quantum Darwinism, a key factor would be the existence
of collective effects in the environment involving transport of the entanglement with
AB. This transport was described however only by using relative entropy between
different parts of the environment [12]. Perhaps the present methods, which seem
to carry more information, could be of use in this very interesting theory. Another
proposal, which was at the origin of the present investigations, concentrates on the
contrary over possible effects of the entanglement of the environment with AB inside
the detector. The main point would not be the effect of decoherence but the fact
that this entanglement is carried by many different traveling waves of which the
succession and accumulation would be ultimately responsible for collapse [20].
It could also be that the two ideas are not mutually exclusive, but it would be
premature and out of place to add anything more presently.
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Chapter 12
Unavoidable Decoherence in Matter Wave
Interferometry

Helmut Rauch

12.1 Introduction

Neutrons are massive particles which exhibit wave and particle features and,
therefore, they are proper tools for testing quantum phenomena (e.g. [21]). With
perfect crystal interferometers widely separated coherent beams can be produced
and modified by nuclear, electroweak and gravitational interactions. Highly efficient
detectors, polarisers and spin flippers are available. Most experiments use thermal
neutrons from a research reactor with velocities in the order of 2,000 m/s and
wavelengths in the order of about 2 Å. The spin state of neutrons can be described by
a typical two-level Zeeman system where transitions can be induced by electromag-
netic interaction. The two coherent beam paths passing through the interferometer
can also be seen as a two-level system and related entanglements can be created and
used for novel entanglement and contextuality quantum measurements.

A high degree of coherence, expressed by the visibility of the interference pattern
(up to 95 %), and high order interferences (up to 200th) have been observed. The
beam in forward direction behind the interferometer consists of wave functions
from beam path I and beam path II, which are transmitted, reflected and reflected
(trr) and reflected, reflected and transmitted (rrt), respectively (Fig. 12.1). From
symmetry considerations follows that both beams are equal in intensity and in phase
(‰trr D ‰rrt/

I0 / ˇ
ˇ‰trr C ei�‰rrt

ˇ
ˇ2 / 1C j�.�/j cos�; (12.1)
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Fig. 12.1 Photos of several perfect crystal interferometers

where a phase shift � between the two beams is present. This phase shift is
connected to a spatial phase shift � and is given by the index of refraction n of any
material, which depends on the particle density N , the coherent scattering length
bc , the neutron wave length � and the thickness of the sample D

� D .1 � n/kD D �Nbc�D D nk:�: (12.2)

When wave packets with momentum width ık are used to describe the neutron
within an interferometer one can define a distinct degree of coherence. The
coherence features are usually described in terms of the well-known Glauber [11]
formalism. The coherence function is defined as the auto-correlation function of the
wave function, which reads for a stationary situation as

�.12.1/. E�/ D
D
 .

*
r / �  .*r C E�/

E
D
Z

g.Ek/ ei.
*
k
*
�/d 3k ; (12.3)

where E� denotes the spatial shift of the two wave fields and g.Ek/ the momentum
distribution in the related direction. The characteristic widths of these functions
define the coherence lengths �c

i which are related to the widths ı ki of the related
momentum distributions as:�c

i ı ki 	 1=2I i D x; y; z. From measurements of the
momentum distributions and the loss of contrast at high order interference, which
is described by j�.1/. E�/j, one obtains coherence lengths in the order of about 200–
500 Å, which represents also the size of the related wave packets [22]. Figure 12.2
shows typical results of such a measurement.
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Fig. 12.2 Neutron interferences measured up to high orders

The complementarity and duality feature of quantum physics is an essential
part for understanding it. According to the Englert-Greenberger-Yasin relation the
wave-particle feature can be considered as a further “two level” system where pure
particle features exist at the north and south poles of the Bloch sphere and pure wave
properties along the equator [8, 9, 13]. This relation combines path predictabilities
P with wave properties V, which equals the visibility of the interference pattern.

P2 C V2 	 1 (12.4)

This relation provides the basis for further entanglement experiments with other two
level systems.

Pre- and post-selection experiments apply higher monochromaticity, better
collimation, spatial resolution or additional time information and, therefore, they
provide more information about a quantum system. Such measurements also
demonstrate that coherence persists even when the coherence pattern is smeared
out due to finite monochromaticity, i.e. of j�.�/j, and due to inhomogeneities
along the beam paths or statistical motions of the interferometer crystal during the
time-of-flight the neutron spends within the interferometer (ı�/. Pre- and post-
selection experiments have verified that coherence features are determined by the
parameters of the apparatus, i.e. the monochromaticity and the collimation of the
beam which determine ık. But the interference pattern also includes effects from
the imperfection of any experimental set-up and, therefore the interference pattern
has to be described by a generalized form of Eq. (12.1)

Imeas D AC B j�.�/j cos.�C �/; (12.5)

where A;B and � are characteristic parameters for each set-up influenced by small
and local variations of the crystal structure, of the geometry, of small vibrations and
small temperature variations.

Various post-selection methods are shown in Fig. 12.3. Pre- and post-selection
provides a step towards more quantum complete measurements as it will be
described in the following sections.
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Fig. 12.3 Various post-selection methods; position post-selection (above), momentum post-
selection (middle) and time post-selection (below)
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Fig. 12.4 Position sensitive post-selection of the contrast B (left) and of the internal phase �
(right) by means of a position sensitive detector

12.2 Position Post-selection

Since the beam cross section is usually much larger than the size of the wave packets
one has to average Eqs. (12.1) and (12.5) over the beam cross section. Figure 12.4
shows the results of position sensitive measurements of the contrast and of the beam
intensity. One notices that there is a rather marked variation of these quantities. This
indicates that there is much more information in the beam than is usually extracted,
or much higher degrees of coherence can be achieved when proper measurement
methods are applied.

12.3 Momentum Post-selection

12.3.1 Visibility Loss due to Wavelength Spread

In the course of several neutron interferometer experiments it has been estab-
lished that smeared out interference properties at high interference order can be
restored even behind the interferometer when a proper spectral filtering is applied.
Figure 12.5 shows the idealized situation for Gaussian wave packets in ordinary
space and the related momentum modulation [19] which reads as:

I0.k/ / exp
��.k � k0/2=2ık2

� f1C cos.�k0=k/g : (12.6)
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Fig. 12.5 Wave packets and momentum distributions for various phase shifts at low and high
interference order [19]

At high interference orders so-called Schrödinger cat-like states are produced
where the neutron occupies spatially separated regions in ordinary space. Related
measurements have been performed by Jacobson et al. [15], which show that
interference fringes can be restored when a proper momentum filter is applied.
Figure 12.6 shows more recent measurements were intensity wiggles have been
observed for various phase shifts [3]. In this case the imperfection of the neutron
beam (wavelength spread) cause contrast reduction at high order due to j�.�/j.

The increasing modulation at high order is clearly visible. This indicates a
forceless beam modulation due to interference. Figure 12.7 shows such a double
humped distribution measured with a double loop interferometer [3]. The spatial
phase shift�1 in the first loop produces the Schrödinger cat-like state and�2 scans
the spatial distribution within the second loop.

As a conclusion of this section, we can say that a loss of visibility of the
interference pattern at high order does not mean a loss of coherence but rather a shift
of coherence features from ordinary space into momentum space. By a proper post-
selection procedure the interference pattern can be retrieved. In all cases a complete
retrieval is impossible since unavoidable losses occur at any interaction the system
experiences [20].
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Fig. 12.6 Experimental arrangement (above) with a third crystal as a momentum (wavelength)
filter and typical momentum scans at different interference order [3]. The blue curves indicate the
momentum distribution without phase shifter

Fig. 12.7 Double loop interferometer (left) and measured spatial distribution for different phase
shifts in the first loop [3]
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12.3.2 Visibility Loss due to Noisy Disturbances

Magnetic fields of strength B and length L produce a phase shift half the Larmor
rotation angle ˛

� D ˛

2
D BL

„v ; (12.7)

where  is the magnetic moment of the neutrons and v their velocity [7]. Within a
quasi-static approximation which may be valid when the time-of flight through the
field is shorter than the typical time change of the field 
tof D L=v 	 1=�field the
loss of contrast for a Gaussian fluctuating field (� B) can be written as

NI0 / 1C e
�
�
L
„v

�
.�B/2=2 cos�: (12.8)

Related measurements with un-polarized neutrons have shown this effect with a
surprising feature that the interference pattern can be restored completely when the
same noise field is applied to both beams at the same distance from splitting position
([3]; Fig. 12.8). When the relative position of the coils is varied, i.e. a time delay
�t D �x=v is introduced, the auto-correlation function of the noise signal can be
measured.

At high order, when the contrast disappears due to wavelength dispersion, the
smearing effect occurs for the modulated momentum distribution as shown in
Fig. 12.9. In this case the dephasing factor of Eq. (12.8) adds to Eq. (12.6).
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Fig. 12.8 Interference pattern with (full lines) and without magnetic noise field (dashed lines)
with frequencies between 0 and 20 kHz and a mean amplitude of 9 G [3]. The noise field has been
applied to the beams separately (above and middle) and to both beams synchronously (below)
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Fig. 12.9 Reduction of the momentum beam modulation when noisy fields are applied shown on
an absolute scale (a) and in a modulation corrected way (b). The general loss of contrast as a
function of the strength of disturbance is shown below [26]

Within the experimental errors the loss of contrast is independent of the spatial
separation of the Schrödinger cat-like states. The reversibility feature when the
same noisy field is applied to both beams indicate that we deal with a dephasing
rather than a decoherence effect [23]. The question how “real” decoherence
(irreversibility) can be achieved remains open. As long as the same disturbance is
applied to both beams the coherence features are preserved and that holds even when
absorption processes occur with the same probabilities in both beams [24].

Time-dependent fields, like those discussed in above, cause also photon exchange
between field and neutron. In the case of a Rabi resonance flipper an one photon
exchange occurs and the neutron polarization changes from spin-up to spin-down
and vice versa [2]. For non-resonance magnetic fields multi-photon exchange has
been observed [25]. Here we want to see whether these inelastic processes can yield
decoherence.

One assumes oscillating fields within a region 0 < x < L which are described as

EB.Er; t/ D ŒB0 CB.t/:.‚.x/ �‚.x �L//� Oz (12.9)

B.t/ D
NX

iD1
Bi cos.!i t C 'i /:

Taking into account that the kinetic energy of the neutrons (�20 meV) is much
higher than the maximal potential barrier (Bi � 0.5 neV) one obtains after some
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analytical efforts the wave field behind the field region [27]

‰III.x; t/ D
X

*
n

Jn1.ˇ1/: : :: : :::JnN .ˇN /e
�EnE�eiknxe�i!nt (12.10)

with

!En D !0 C *
n E! Ek2En D k20 � 2m

„2 B0 C 2m
„ En E!

�i D 'i C !i TC�
2 ˇi D 2˛i sin !i T

2 ˛i D Bi
„!i T D L

v0

EnD .n1: : :: : :: : :nN /; E'D .'1: : :: : :::'N /; E!D .!1: : :: : :::!N /; E�D .�1: : :: : :: : :�N /;

where Jni .ˇi / denote the Bessel functions of order ni , which determine the
transition amplitudes. From this relation one gets the interference pattern as:

I0.x:t/D 1
2

ˇ
ˇ‰I .x; t/C ei�‰III.x:t/

ˇ
ˇ2 D 1C Re

(

ei�
P

En
Jn1 : : :: : ::JnN :e

i En.�iCE!t/
)

with �i D �i � !i x
v0

(12.11)

When the fundamental frequency of all frequencies is !f the interference pattern
can be expressed in a Fourier series

I0.x; t/ D
mD1X

mD�1
cm.x/e

im!f t ; (12.12)

where a comparison with Eq. (12.8) gives, for un-polarized neutrons where only
even m-terms remain.

cm D ım0 C
X

EnI En E! D m!fP

i

nieven

Jn1.ˇ1/: : :: : ::JnN .ˇN /e
i EnE� cos�; (12.13)

which shows that the Fourier coefficient belonging to the frequency m!f contains
the same product of Bessel functions as the transition amplitudes for an energy
exchange m„!f . The argument of the Bessel functions also contains a sin(!t/2)-
term defining a “resonance”-condition. If the time-of-flight T D L=v through the
field region fulfils !iTD 2�l (l D 1; 2; 3: : :) no resulting energy exchange occurs.

Related experiments have been performed with a time resolved analysis of
the interference pattern, where the periodicity of the applied magnetic field
(!f D 2�ff ; ff D 1 kHz) also manifests itself in the interference pattern [27].
The related energy transfers lie in the order of 1 peV and energy gain and energy
loss processes are equal, which is caused by the symmetric sinusoidal fields. The
calculated results show good agreement with the measured values (Fig. 12.10). One
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Fig. 12.10 Example of a time-resolved interference pattern for a two mode field f1 D 3 kHz and
f2 D 3 kHz and B1 D 30G (left) and extracted multi-photon transition probabilities (right) [27]

Fig. 12.11 Calculated loss of contrast for a low frequency and a high frequency field as a function
of the mean field amplitude [27]

notices that absorption and emission probabilities are equal which results from the
symmetric interaction potential [Eq. (12.9)].

This procedure has been extended experimentally up to a 10 mode field and
further by numerical methods up to a 1,000 mode field. When random phases,
Gaussian variations of the amplitude and different frequency spectra are employed
one can simulate a noisy field. Figure 12.11 shows the results for a rather low
frequency and a higher frequency spectrum.

As conclusion of this section it should be mentioned that a loss of visibility in an
interference experiment does a priori not indicate a loss of coherence, but that a non
adequate measuring method has been applied and it indicates that decoherence is
also rather difficult to achieve and probably as difficult as to preserve coherence.
More and more complete quantum measurements may reduce decoherence by
means of more sophisticated investigations, but some decoherence will always
remain as a residual of all interactions experienced by the system and due to
unavoidable losses (see Sect. 12.5, [20]).
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12.4 Time Post-selection

Instead of measuring the interference pattern by scanning the phase shifter and
registering the intensity over a certain time interval, one can also measure the arrival
time of each neutron, which means one extracts more information. From these data
the time dependent intensity correlation function can be extracted, which reads for
a Poissonian beam [12, 16],

G.2:2/.�; t/ D hI1.0; 0/I2.�; t/i D NI .�/e� NI .�/t ; (12.14)

and gives the probability of registering a neutron at time t , if there was another
one registered at t D 0. Related measurements have been done at our low intensity
research reactor in Vienna [28]. In Fig. 12.12 results for the interference pattern of
the whole beam are shown in the upper part and the interference pattern for neutron
pairs arriving within a time interval (o<t<3 s) which is shorter than the mean time
interval of arriving neutrons ( N
 D 1= NI / and for neutron pairs arriving within a
interval larger than the mean arrival time interval. One notices that the contrast can
be increased and becomes opposite to the contrast of the overall beam.

Fig. 12.12 Interference contrast of the overall beam and of neutron pairs within different time
intervals (left) and the visibility as a function of the time intervals (right) [28]
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These results demonstrate that considerably more information can be deduced,
even from a Poissonian beam, when the individual arrival times of the neutrons are
registered to define pair correlation functions inherent to quantum systems.

12.5 Unavoidable Losses

We discuss this aspect with the means of a phase echo experiment done with two
opposite phase shifting samples as shown in Fig. 12.13 [5]. The interference contrast
disappears at high order for a thick Bi and Ti sample but is restored when both phase
shifters are inserted since the phase shift of Bi is negative and that of Ti positive
with the sum zero. Nevertheless, quantum theory teaches us that at any barrier of
height NV D 2�„2Nbc=m and thicknessL there are more wave components than the
incident and the transmitted wave. The reflectivity reads as (e.g. [6])

R D 1 � T D 1 � 4E.E � NV /
4E.E � NV /C NV 2 sin2 kL

Š 1

2

 NV
2E

!2
�
1 � cos2 kL

	

(12.15)

Fig. 12.13 Phase-echo experiment using phase shifters with positive (Bi) and negative (Ti)
coherent scattering lengths causing positive and negative phase shifts. The retrieval of the contrast
becomes visible when both phase shifters are inserted and the total phase shift becomes zero [5]
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The oscillating term vanishes when E >> NV and when the barrier produces phase
shifts larger than the coherence length of the beam and one gets

R Š 1

2

 NV
2E

!2

; (12.16)

which is of the order 10�10 for thermal neutrons and reasonable materials or
magnetic potentials but these losses are unavoidable. The transmission and the
reflectivity of arbitrarily shaped potentials can be calculated in a similar way
leaving the general conclusions unchanged, e.g. Cohen-Tannoudji et al. [6]. For
multiple potential barriers the formulae become rather complicated because multiple
interference effects have to be taken into account. Figure 12.14 shows that different

Fig. 12.14 Approximate and complete wave-functions when differently shaped potential barriers
(phase shifters) are used. One notices that the correct wave-functions have much more components
than the simplified ones (above) which are often used for straight-forwardness
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Fig. 12.15 Parasitic waves
from a three-fold barrier and
how they can be measured, in
principle

D1
D2

D20

d1
t1

t2

t3

d2

V1

V 2

V 3

I 0

wave functions arise for different arrangements of the same potential. In the upper
part the simplified wave functions are shown whereas in the lower part the complete
wave functions are indicated. There are infinite back and forth reflections even in the
case that there is only one source and one detector since there has to be a potential
on both sides. The wave function behind the interaction region (and in front of
it) contains the full information about the structure and strength of the interaction
region and a quantum more complete experiment would have to measure all parasitic
beams as shown in Fig. 12.15. The measurement of all parasitic beams gives one also
full information about the main beam and can be considered as a weak measurement
of that beam [1]. A complete retrieval to the original state appears impossible
although only unitary actions have been applied. Thus, decoherence appears as
an intrinsic feature of all physical processes starting with the first interaction the
quantum system experiences.

12.6 Discussion

Neutron interference experiments have shown that a washed out interference pattern
can be restored to a high degree when proper post-selection procedures are applied.
The newly generated visibility values may be considered to violate the particle-wave
duality relation Eq. (12.4), but that is not true because the particle features become
changed as well. Even in the case of a multi-mode noise field with multi-photon
exchange the contrast can be retrieved when the same noise field is applied to the
other beam or a time-resolved measurement is carried out. A retrieval procedure
up to a certain degree is possible whenever the reason for dephasing is known, but
unavoidable quantum losses of coherence remain from any interaction experienced
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by the quantum system [20]. More complete measurements show how much more
information is inherent in any experiment and usually only a small part is extracted.
It also means that a complete isolation from the environment is impossible and a
residual entanglement between the quantum object and the environment remains
resulting in causal connections between the micro- and macro world [29, 30]. In the
quantum measurement process a superposition state between the quantum object
j 0i and the apparatus j<0i is produced, which results in an entanglement between
the quantum object and the environment. The evolution of the joint system j 0i j<0i
follows a unitary operator [

j 0i j<0i [�!
NX

nD0
cn j ni j<ni ; (12.17)

where the Pointer states <n appear according to the probabilities cn which are
determined by the solution of the linear Schrödinger equation. There may be
preferred cn-values as in the case of Fig. 12.15 where c0 may be dominant but all
other cn-values exist as well. The arrow in Eq. (12.17) can be interpreted as an arrow
of time since a complete retrieval of the states is impossible.

This is not in contradiction with the concept that irreversibility is a fundamental
feature of nature and that reversibility is only an approximation, a conclusion stated
by several authors (e.g. [4, 14, 18]). At the same time it is closely connected to the
quantum measurement problem, because a complete retrieval becomes impossible
since in any interaction small loss mechanisms are unavoidable and they are caused
by boundary and initial conditions [10, 17]. The appearance of entropy associated
with decoherencing effects reflects the presence of an arrow in time in quantum
theory, i.e. a fundamental irreversibility in the formalism of the theory itself [9, 20].
This irreversibility comes into play only through initial and boundary conditions in
our universe.
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Chapter 13
Classical-Like Trajectories of a Quantum
Particle in a Cloud Chamber

G. Dell’Antonio, R. Figari, and A. Teta

13.1 The Wilson Cloud Chamber

The cloud chamber, “the most original and wonderful instrument in scientific
history” according to Ernest Rutherford, was devised and made available by Charles
Thomson Rees Wilson at the end of the first decade of last century.

The main idea of Wilson was to make visible the “ionizing radiation” by
condensing water on the ions produced by ˛ and ˇ rays in air supersaturated
with water-vapor. His aim was to give a conclusive experimental verification of the
particle nature of the ˛ and ˇ-radiations.

On one hand, some experimental problems were overwhelmingly complicate
to be confronted by. A perfect synchronization of the sudden cooling, of the
illumination of the chamber and of the photographic capture was required.

On the other end, the overall intuitive picture of what was happening in the
chamber was perfectly depicted: the ˛-particle, emitted by a radioactive source (in
an unpredictable although specific direction), ionizes molecules of the gas filling the
chamber. In turn, ions become condensation nuclei for water-vapor giving rise to a
sequence of small drops of water along the trajectory of the ˛-particle.
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In the early days of quantum mechanics, it was immediately noticed that the
explanation of the phenomenon, as it was given by physicists at the time of Wilson,
seemed at variance with some of the cornerstones of the new theory.

In fact, inside the framework of the orthodox theory, a classical trajectory of
a quantum particle could only be the result of repeated “collapses” of its wave
function due to repeated measurements. Pushing to the limit, each scattering event
should be considered a measurement process. On the other end, in the orthodox
approach, a measurement apparatus must be considered as a classical object
whose evolution has to be described and predicted using classical kinematics and
dynamics. Classical observables like position or trajectory can only be properties
emerging as a consequence of the interaction of the microscopic system with the
classical measurement apparatus. By no means, they are properties possessed by the
system before the measurement.

It is clear that this point of view is hardly compatible with the interpretation of a
simple scattering event as a measurement process.

The apparent contradiction shows that the issue of describing what “really”
happens in a cloud chamber highlights the most subtle problems of the Copenhagen
interpretation:

• Where should the frontier between the quantum and the classical realm be
placed? In particular,

• how large should be an array of atoms to behave as a classical system?
• When and where does the collapse process take place?

It is well known that the final formalization of quantum mechanics, given by John
von Neumann in 1932 [34], assumes two different evolution laws for a microscopic
system: the continuous unitary evolution given by the Schrödinger equation, as long
as the system remains isolated, and a stochastic and/or non-linear sudden change
driving to the collapse of the wave function, during the measurement process.
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As is clear, von Neumann’s dynamical assumptions leave the issues listed above
unanswered.

In 1929, Charles Galton Darwin proposed a completely new way to look at the
formation of classical tracks in a cloud chamber. In retrospect, one can say that the
following simple Darwin’s reflection was extremely far-reaching: the Schrödinger
equation describes the evolution in the configuration space of the whole system.
Taking into account the electrons of the gas atoms together with the particle, no
contradiction exists in principle with the existence of solutions which show the
˛-particle moving in a small cone with apex in the radioactive source and only
atoms in the cone ionized.

In the same year, Sir Nevill Francis Mott concretized Darwin’s proposal ana-
lyzing the long time behavior of the Schrödinger equation solutions relative to the
˛-particle and the electrons of two hydrogen atoms playing the role of the gas in the
cloud chamber.

Mott’s paper did not receive the attention that it would have deserved and it
remained almost unknown also during the 1960s when the interest in probing the
frontier between classical and quantum behavior had a new start.

By now, a significant amount of experimental and theoretical work in the field
is available. More and more sophisticated experiments have pushed the border
quantum-classical towards larger and larger system sizes. At the same time, new
theoretical investigations analyzed the loss of quantum coherence due to the
interaction of a microscopic system with a large environment (see, e.g., [1, 2, 8, 26–
29, 36] and references therein).

Main purpose of this report is to present further attempts to investigate whether
a purely quantum mechanical treatment can justify the (experimentally verified)
statement that in a cloud chamber filled with supersaturated gas an ˛-decay produces
at most one sequence of liquid droplets (track) and that this track is compatible with
the trajectory of a classical particle. In summary, we want to test the compatibility of
the experimental outputs with the following rough statement: the ˛-wave is turned,
by the interaction with the environment, into an ˛-particle of the same energy as the
initial wave and with a momentum direction having a definite orientation.

13.2 The Earliest Theoretical Investigations

In 1928 Gamow [20] and Condon and Gurney [11] made the first attempt to
approach the ˛-decay phenomenon according to quantum mechanics. A crucial
point of their analysis was that, at the time of the emission, the ˛-particle state had
to be a spherical wave centered in the radioactive nucleus, with a highly isotropic
average momentum. As pointed out before, it was immediately manifest that the
assumption of a spherical wave as initial state makes the explanation of the tracks
observed in a cloud chamber rather problematic.

Such a difficulty had already been mentioned by Born who, during the general
discussion at the Solvay Conference in 1927 [5], noted: “Mr. Einstein has consid-
ered the following problem: A radioactive sample emits ˛-particles in all directions;



294 G. Dell’Antonio et al.

these are made visible by the method of the Wilson cloud chamber. Now, if one
associates a spherical wave with each emission process, how can one understand
that the track of each ˛-particle appears as a (very nearly) straight line? In other
words: how can the corpuscular character of the phenomenon be reconciled here
with the representation by waves?”

According to Born, the question could be answered using the notion of
“reduction of the probability packet” induced by “observation” by means of light,
discussed by Heisenberg in [22]. Indeed, Born claimed: “As soon as such ionization
is shown by the appearance of cloud droplets, in order to describe what happens
afterwards one must reduce the wave packet in the immediate vicinity of the drops.
One thus obtains a wave packet in the form of a ray, which corresponds to the
corpuscular character of the phenomenon”. It should be stressed that, according to
this point of view, the evolution of an ˛-particle in a cloud chamber can be described
as the result of the interaction of a quantum system (the ˛-particle) with a classical
measurement apparatus (the atoms of the vapor). Such interaction is responsible for
the “reduction” of the spherical wave to a wave packet with definite position and
momentum.

As a possible alternative description of the process, Born also considered an
approach where both the ˛-particle and the atoms of the vapor are considered
part of a unique quantum system, described by a wave function depending on
the coordinates of all the particles of the system. In particular, he proposed a
simplified one-dimensional model consisting of a test particle (the ˛-particle) and
two harmonic oscillators placed at fixed positions (the atoms of the vapor). At initial
time, the test particle is described by a superposition state of two wave packets
with opposite momentum and position close to the origin, while the harmonic
oscillators are in their ground states. A qualitative discussion of such a model led
Born to the claim that the test particle has a very low probability of exciting both
oscillators unless they are located on the same half-line starting from the origin (for
a quantitative analysis see e.g. [13, 19]).

The analysis of the model is then completed with a statement involving once
again the reduction postulate: “To the reduction of the wave packets corresponds the
choice of one of the two directions of propagations”, and the choice is done when
the excitation of an oscillator is observed. Only after the observation, the evolution
of the test particle can be assimilated to that of a classical particle propagating along
a definite trajectory.

In conclusion, Born conceded that an analysis of the quantum evolution of the
˛-particle in interaction with the (quantum) environment made of the vapor atoms is
possible, “but this does not lead us further as regards the fundamental questions”, in
the sense that the reduction postulate is anyway required for a complete description.

A further fundamental contribution to the theoretical analysis of the cloud
chamber problem was given by Heisenberg in his lectures at the University of
Chicago in 1929, published in [23]. He pointed out that a quantum description of
an experimental situation always requires to fix an arbitrary border between the
quantum system under consideration and the (classical) measuring apparatus. For
any fixed border one has different, but equivalent, descriptions of the phenomenon.
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In the case of the cloud chamber Heisenberg considered the following two reason-
able choices: (a) the quantum system consists of the ˛-particle alone (and then the
molecules of the vapor play the role of the measurement apparatus); (b) the quantum
system consists of the ˛-particle and of the molecules of the vapor.

In case (a) the analysis proceeds as follows. The ˛-particle, evolving in the
chamber as a spherical wave, collides with a molecule of the vapor which acts
as a measuring device of the particle position. Therefore, immediately after the
collision, the state of the ˛-particle is reduced to a narrow wave packet concentrated
around the position of the molecule. Furthermore, one knows that at time zero the
˛-particle starts from the position of the radioactive nucleus and that the momentum
is conserved. This implies that the wave packet has an average momentum along the
direction 	 joining the radioactive nucleus and the position of the molecule (notice
that in this way Heisenberg states that the measurement actualize a posteriori the
momentum possessed by the particle before the measurement itself).

Such a wave packet emerging from the molecule propagates in the chamber
according to the free Schrödinger dynamics, with an inevitable spreading in
position. However, the ˛-particle collides with the next molecule placed along 	
and a new position measurement takes place, determining a refocusing of the wave
packet along 	 . The process is repeated a large number of times and the result is that
the wave packet remains concentrated along 	 , which is identified as the observed
“trajectory” of the ˛-particle.

In case (b) the molecules of the vapor and the ˛-particle form a many-
particle quantum system, whose dynamics is governed by the Schrödinger equation.
Heisenberg notes that in this case the physical description “is more complicated
than the preceding method, but has the advantage that the discontinuous change of
the probability function recedes one step and seems less in conflict with intuitive
ideas.”

In order to give a qualitative idea of the behavior of the whole system, Heisenberg
considers a three-particle model, made of the ˛-particle and two molecules with
centers of mass fixed in the positions aI , aII . At initial time the ˛-particle is
described by a plane wave with momentum p and the molecules are in their ground
states.

The problem is now reduced to find an approximate solution of the Schrödinger
equation and to compute the probability that both molecules are excited. The
procedure is only briefly outlined and many mathematical details are neglected, but
the result, based on a deep physical intuition, is clearly stated: the probability that
both molecules are excited is significantly different from zero only if the momentum
p is parallel to the line joining aI and aII . Such a result can be considered a
satisfactory explanation of the observed trajectory of an ˛-particle in the chamber,
since the trajectory can only be observed through the excitations of the molecules.

However Heisenberg stresses that also in case (b) the reduction postulate is used
when one “observes” the excitation of the molecules. This means that in case (b) the
border between system and apparatus has only been moved to include the molecules
in the system.
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The conclusion is that, according to Heisenberg, the approaches in cases (a) and
(b) are conceptually equivalent since in both cases the reduction postulate must be
invoked for a complete description of the physical situation.

In 1929, Darwin [12] presented a different interesting inspection of the cloud
chamber problem. The approach proposed by Darwin is entirely based on the
Schrödinger equation and it is surprisingly close to the one of decoherence theory
developed in the last decades of the last century.

More precisely, he stresses that a satisfactory description of a quantum system
S (like the ˛-particle) is achieved only if one takes into account its interaction with
(part of) the environment E . As a consequence, one has to compute the evolution
of a wave function  depending on the coordinates of S and of E . Given such  ,
the probabilistic predictions on the system S can be obtained by taking an average
over all possible final configurations of the environment E . Such a strategy is surely
“discouragingly complicated”, but it can provide an explanation of the particle
behavior of S without any reference to the reduction postulate.

In the case of the cloud chamber, the wave function  is a function of the
coordinates of the ˛-particle and of the atoms in the chamber. At the initial time,
such  can be reasonably assumed to be a product of the spherical wave for the
˛-particle and of the ground states for the atoms. “But the first collision changes
this product into a function in which the two types of coordinates are inextricably
mixed, and every subsequent collision makes it worse.” A detailed computation of
such  is impossible but one can obtain for  an integral representation containing
a phase factor and “without in the least seeing the details, it looks quite natural to
expect that this phase factor will have some special character, such as vanishing,
when the various co-ordinates satisfy a condition of collinearity.” It should be noted
that in these words it is clearly outlined the stationary phase method as the correct
technical tool to prove the emergence of the particle behavior.

Darwin’s view can be summarized by saying that the wave function is the only
crucial object of quantum theory and all the particle and the wave properties of a
system can be derived from an accurate analysis of  .

13.3 Mott’s Analysis

Darwin’s program was concretely realized by Mott in his seminal paper [31].
Despite its importance, this work of Mott’s does not seem to be sufficiently well
known and therefore, in the following, we shall describe it in some details (we also
refer the reader to [7, 10, 15–17, 30] for further critical considerations on the paper).

In the introduction, Mott acknowledges having been inspired by Darwin’s paper.
He admits that the perspective outlined by Darwin seems counterintuitive at first,
since “it is a little difficult to picture how it is that an outgoing spherical wave can
produce a straight track; we think intuitively that it should ionise atoms at random
throughout space”. Like Heisenberg, Mott points out that the crucial point is to
establish the border line between the system under consideration and the measuring
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device. In a first possible approach (corresponding to case (a)) in Heisenberg’s
approach), the ˛-ray is the system and the gas of the chamber is the measurement
device by which we observe the particle. Here, the ˛-ray must be considered a
particle immediately after the disintegration process, since at that moment the gas
(i.e., the device) reduces the initial spherical wave to a narrow wave packet with a
definite momentum. In the other approach (case (b) in Heisenberg), the ˛-particle
and the gas are considered together as the system under consideration. In this case,
the ionized atoms are the entities to be observed and the wave function  of the
system should provide the ionization probability. Only after the ionization has been
observed are we allowed to consider the ˛-ray as a particle.

According to this point of view, the mentioned intuitive difficulty can be
overcome, since it arises from our erroneous “tendency to picture the wave as
existing in ordinary three dimensional space, whereas we are really dealing with
wave functions in multispace formed by the co-ordinates both of the ˛-particle and
of every atom in the Wilson chamber.”

In the rest of his paper, Mott discusses a simple model showing how this second
approach actually works. The model is essentially the same as the one considered
by Heisenberg and it consists of the ˛-particle, initially described by a spherical
wave centered at the origin, and only two hydrogen atoms. The nuclei of the atoms
are supposed as at rest in the fixed positions a1, a2, with ja1j < ja2j. It is assumed
that the ˛-particle does not interact with the nuclei, and the interaction between the
two electrons is also neglected. Moreover, the interaction between the ˛-particle and
the electrons is treated as a small perturbation. The main result of the paper can be
summarized in the following statement:

the two hydrogen atoms cannot both be excited (or ionized) unless a1 , a2 and the origin lie
on the same straight line.

We shall outline the way Mott derives the result under suitable assumptions,
trying to follow his original notation and line of reasoning. We suggest the reader
who is not interested in mathematical details to skip the next few pages and proceed
directly to the final remarks at the end of this section.

The main object of the investigation are periodic solutions F.R; r1; r2/e
iEt=„

of the Schrödinger equation for the three-particle system, where R, r1, r2 denote
the coordinates of the ˛-particle and of the two electrons of the hydrogen atoms
respectively. Such F is the solution of the stationary Schrödinger equation

� „2
2M

�RF C
�

� „2
2m

�r1 � e2

jr1 � a1j
�
F C

�
� „2
2m

�r2 � e2

jr2 � a2j
�
F

�
� 2e2

jR � r1j C 2e2

jR � r2j
�
F D E F (13.1)

where �x is the laplacian with respect to the coordinate x, M is the mass of the
˛-particle, m is the mass of the electron, �e is the charge of the electron and 2e is
the charge of the ˛-particle.
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The solution of Eq. (13.1) can be conveniently expanded in series of the
eigenfunctions of the two hydrogen atoms. More precisely, let  j be the j -th
eigenfunction of a hydrogen atom centered in the origin, with  0 denoting the
ground state. Then the corresponding eigenfunctions of the atoms in a1, a2 are

‰I
j .r1/ D  j .r1 � a1/; ‰II

j .r2/ D  j .r2 � a2/ (13.2)

Note that here it seems tacitly assumed that the index j can be an integer or a real
positive number (and, correspondingly, j is a proper eigenfunction or a generalized
eigenfunction).

Taking advantage of completeness of the system of the eigenfunctions, we have
the following representation for F

F.R; r1; r2/ D
X

j1;j2

fj1j2.R/‰
I
j1
.r1/‰

II
j2
.r2/ (13.3)

The Fourier coefficients fj1j2.R/ of the expansion have a direct physical interpreta-
tion. Indeed, using Born’s rule, the probability for finding the first atom in the state
labeled by j1 and the second atom in the state labeled by j2 is

Z

dR jfj1j2.R/j2 (13.4)

According to this interpretation, one might loosely say that the “wave function” of
the ˛-particle is f00.R/ if both atoms remain in the ground state, fj10.R/, j1 ¤ 0, if
the first atom is in the j1-th excited (or ionized) state and the second in the ground
state, fj1j2.R/, j1; j2 ¤ 0, if both atoms are excited (or ionized).

The analysis shows that f00.R/ is a (slightly deformed) spherical wave and
fj10.R/, j1 ¤ 0, is a wave packet emerging from a1 with a momentum along the line
Oa1. This means that the second atom can be excited by such wave packet only if
a2 lies on the line Oa1. Thus the desired result will follow, i.e. fj1j2.R/, j1; j2 ¤ 0,
is approximately zero unless the condition of collinearity is satisfied.

The computation is carried out using second order perturbation theory and treat-
ing the interaction of the ˛-particle with the two electrons as a small perturbation.
Then one writes

F D F .0/ C F .1/ C F .2/ C � � � (13.5)

and each term of the series is computed by the method of successive approximation,
in the form of a diverging spherical wave multiplied the ground state of the two
atoms

F .0/.R; r1; r2/ D f
.0/
00 .R/‰

I
0 .r1/‰

II
0 .r2/ ; f

.0/
00 .R/ D eikjRj

jRj

k D
p
2M.E � 2E0/

„ (13.6)
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where Ej denotes the j -th eigenvalue of the hydrogen atom. We see that the
context of the stationary Schrödinger equation forces Mott to choose a solution
not in L2, which, strictly speaking, is not legitimate. In particular the probabilistic
interpretation (13.4) fails for f .0/

00 .
For the first order term

F .1/.R; r1; r2/ D
X

i1;i2

f
.1/
i1i2
.R/‰I

i1
.r1/‰

II
i2
.r2/ (13.7)

one finds

f
.1/
j1j2
.R/ D M

2�„2
Z

dR0Kj1j2.R
0/
e˙ik0jR�R0j

jR � R0j ; k0 D
p
2M.E �Ej1 � Ej2/

„
(13.8)

where

Kj1j2.R/ D f
.0/
00 .R/

�
ı0j2Vj10.R � a1/C ıj10V0j2.R � a2/

�
(13.9)

Vij .x/ D �
Z

dy
2e2

jx � y j i .y/ j .y/ (13.10)

Note that, from (13.9), one has Kj1j2.R/ D 0 if both j1 and j2 are different from

zero and therefore, by (13.8), one also has f .1/
j1j2

D 0 if both j1 and j2 are different
from zero.

From these preliminary considerations a first conclusion can be drawn:

At first order in perturbation theory the probability that both atoms are excited is always
zero.

The result is not surprising since, as Mott remarks, in perturbation theory the
probability that one atom is excited is a first order quantity and the probability that
both atoms are excited is a second order quantity. This explains why the second
order term F .2/ is required in order to obtain an estimate of the double excitation
occurrence.

The further point is to give an approximate expression for f .1/
j10

and f
.1/
0j2

.

From (13.8), and (13.9), for f .1/
j10

one has

f
.1/
j10
.R/ D M

2�„2
Z

dy f
.0/
00 .y C a1/Vj10.y/

eik0jR�a1�yj

jR � a1 � yj ; j1 ¤ 0

(13.11)
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and analogously for f .1/
0j2

. In order to find the required approximate expression Mott
introduces the following assumptions:

(a) the “observation point” R is far away from the origin and the atom, i.e.
ja1j � jRj;

(b) the collision for the ˛-particle is almost elastic, i.e. k � k0 � k;
(c) the ˛-particle has a high momentum k.

Using assumption (a) one obtains the asymptotic formula

f
.1/
j10
.R/ ' eik0jR�a1j

jR � a1j
M

2�„2
Z

dy f
.0/
00 .y C a1/Vj10.y/ e

�ik0u1.R/�y (13.12)

where

u1.R/ D R � a1

jR � a1j (13.13)

Using the explicit expression of f .0/
00 (see (13.6)) and assumption (b) one can write

f
.1/
j10
.R/ ' eik0jR�a1j

jR � a1j I.u1.R// (13.14)

I.u1.R// D M

2�„2
Z

dy
Vj10.y/

jy C a1j e
ik.jyCa1j�u1.R/�y/ (13.15)

One sees that f .1/
j10
.R/ has the form of a wave diverging from a1, whose amplitude

I is given by the integral in (13.15) and it is explicitly dependent on the direction
u1.R/.

The crucial point is now to evaluate such amplitude. By assumptions (c),
the integral in (13.15) is a highly oscillatory integral and then stationary phase
arguments can be used. The leading term of the asymptotic expansion for k ! 1
is determined by the value of the integrand at the critical points of the phase, i.e. for
points y such that

ry

�
jy C a1j � u1.R/ � y

�
D y C a1

jy C a1j � u1.R/ D 0 (13.16)

On the other hand, the integrand in (13.15) is very small except in a neighborhood
of y D 0. Therefore one obtains the condition

u1.R/ ' a1

ja1j (13.17)

Using condition (13.17) in (13.13) one can deduce that the amplitude I is
significantly different from zero only for those R such that R � a1 is (almost)
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parallel to a1, i.e. the observation point R must be (almost) aligned with the first
atom and the origin.

From the above argument one concludes that f .1/
j10
.R/ is approximately given

by a wave diverging from a1 with an amplitude very small except for R given
by (13.17), i.e. except in a small cone with vertex in a1 and pointing away from
the origin. A completely analogous analysis is valid for f .1/

0j2
.R/.

We will not give here details of Mott’s estimate of the second order term. The
final result is a straightforward consequence of the “focusing” of the first order term
in the direction connecting the origin to the first atom.

If one agrees that the (amplified) effect of the excitations of the atoms is the true
observed phenomenon in a cloud chamber then the result can be rephrased to say
that one can only observe straight tracks. In this sense, Mott provides a satisfactory
explanation of the straight tracks observed in the chamber based entirely on the
Schrödinger equation.

It is worth emphasizing that the analysis Mott developed is based on a deep phys-
ical intuition. Indeed, the three-body problem discussed in his paper is an extremely
simple but non-trivial model and it is especially well suited for highlighting the
emergence of the qualitatively behavior of the ˛-particle without unnecessary
complications.

Even though it is not particularly stressed in Mott’s paper, another important
aspect is the fact that the result is valid under specific physical assumptions (large
value of k and quasi-elastic interaction). In other words, the observed behavior of
the ˛-particle in a cloud chamber is far from being universal.

In this sense, Mott’s analysis can be considered the original prototype of the
modern approach to the theory of environment-induced decoherence. In fact, the
classical behavior (the trajectory) of the system (˛-particle) emerges as an effect of
the interaction with the environment (vapor atoms in the chamber) under suitable
assumptions on the physical parameters of the model.

It should also be noted that there is surely a gap in the mathematical rigor of
Mott’s paper. For instance, the stationary phase theorem is used without an accurate
control of the conditions of applicability. Another unsatisfactory aspect is the use
of the stationary Schrödinger equation, which prevents a more transparent time-
dependent description of the evolution of the whole system.

13.4 The Role of Semi-classical Analysis

In the study of the classical limit of quantum mechanics, the use of stationary phase
techniques is suggested by analogy with geometrical optics since the initial wave
has a very high frequency (momentum).

In fact, from the technical point of view the situation is similar to the case
of optics, since we compare a theory based on point particles propagating along
trajectories (classical mechanics corresponding to geometrical optics) with a theory
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based on wave solutions of the Schrödinger equation (quantum mechanics in
analogy with “physical” optics). Instead, it at once becomes clear that the situation
is quite different from the point of view of the physical interpretation. In quantum
mechanics, the wave representing the quantum state does not describe a physical
object distributed in ordinary space, as in optics. Rather, it is a probability amplitude
in the (classical) configuration space associated to the (whole) quantum system
under consideration. Its role is to provide the statistical distribution of the outputs
of repeated experiments. Moreover, the superposition principle introduces a crucial
difficulty since no definite meaning can be given to the configuration of a quantum
system in a superposition state. In other words, the standard formulation of quantum
mechanics does not provide a space-time description of the behavior of a quantum
object easily comparable with the classical one. For these reasons, the classical limit
of quantum mechanics is, both technically and conceptually, hard to ascertain.

The traditional approach is essentially based on the analysis of the solutions of
the Schrödinger equation in the limit “„ ! 0” for a suitable choice of the initial
state. We recall that in this context the limit “„ ! 0” simply means that the typical
action of the system is large with respect to the Planck’s constant.

Usually one considers two possible kinds of initial states, chosen by analogy with
the case of optics: WKB states and coherent states.

The former are defined by an amplitude independent of „ and a highly oscillating
phase for „ small. In this case one can show, for „ small and for short times,
that the corresponding solution of the Schrödinger equation has the same form,
with amplitude and phase governed by the classical transport and Hamilton-Jacobi
equations respectively. This means that in the limit the quantum state propagates
like a classical fluid and in this sense the classical description is recovered.

Coherent states are wave packets well concentrated in position and momentum
around a point .x0; p0/ in classical phase space for „ small. One can prove that the
time evolution, for „ small and a time interval not too long, is again described by
a wave packet well concentrated in position and momentum around the classical
trajectory starting from .x0; p0/.

Making available precise statements and mathematical proofs to detail the above
qualitative pictures has required a great deal of technical work. Many refined and
detailed results and summaries of the theory are at one’s disposal in the literature
(see, e.g. [33] and [4] and references therein).

Despite their mathematical elegance, such kind of results cannot be considered
conclusive for a complete understanding of the classical limit of quantum mechan-
ics. The reason is that the approach is crucially based on the choice of specific,
essentially classical, initial states. Given the characteristic of the quantum system
and of its environment, we expect that a classical behavior should emerge also
starting from a genuine quantum state, like a superposition state. In such a case
the usual procedure „ ! 0 turns out to be insufficient.

The idea behind this theoretical analysis is that quantum coherence between the
components of a superposition state is very fragile. Even a weak interaction of
the system with the environment can significantly reduce coherence and a classical
behavior of the system can emerge.
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In the case of a cloud chamber, the initial state of the ˛-particle is a spherical
wave, i.e., a (continuous) superposition of semi-classical states of the type men-
tioned above.

To explain the classical trajectories that are observed one has to analyze in detail
the decoherence effect induced by the environment. The intuitive picture is clear-cut:
each semi-classical component of the ˛-particle initial state evolves, according to
semi-classical theory, along an almost straight line interacting in the meanwhile with
a small section of the environment. The crucial point is that different semi-classical
components interact with different parts of the environment. As a consequence, the
state of entire system becomes an almost incoherent sum of states supported in
distant regions of the classical configuration space.

Our attempt is to give a rigorous version of this picture. To achieve this goal
we have to quantify the response of a model quantum environment to the particle
passage.

It is worth emphasizing that a modification of the environment is the only
experimental output one can observe. Contrary to what is often stated, one should
not “trace out” the environment degrees of freedom, but rather those of the particle.
That is exactly what Mott did when trying to estimate the multiple ionization
probability of atoms in a cloud chamber.

The results we obtained during the last decade [9, 13, 14, 19, 32] suggest an
effective strategy for dealing with the study of quantum mechanical microscopic
systems in interaction with quantum environments. It consists in building up simple
models of quantum environments and analyzing their evolution under specific
hypotheses on the physical parameters of the models.

13.5 Mott’s Analysis Revisited

In [14] we propose a rigorous, time-dependent version of the original Mott’s result.
We consider a three-particle quantum system consisting of the ˛-particle, initially
described by a spherical wave centered in the origin, and two model atoms placed
at fixed positions a1 ; a2 2 R

3, with 0 < ja1j < ja2j. For the sake of simplicity,
each model atom is described by a particle subject to an attractive point interaction
placed in ai , i D 1; 2. For a detailed study of an Hamiltonian with a point interaction
we refer to [3]. Here we only recall that it is a solvable model, i.e., spectrum and
eigenfunctions can be explicitly computed. In particular the absolutely continuous
spectrum is the positive real semi-axis, the singular continuous spectrum is empty
and, in the attractive case, there is one negative, non degenerate eigenvalue. We
also recall that a Hamiltonian with a given smooth interaction potential V can be
reconstructed as the limit of Hamiltonians with many randomly distributed point
interactions [18].

At initial time we assume that both atoms are in their ground state (the
eigenvector corresponding to the negative eigenvalue). Furthermore, we assume that
the ˛-particle and the atoms interact via a smooth two-body potential.
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A crucial step for the analysis is a precise specification of the assumptions on the
physical parameters of the model. We assume that:

(i) the wavelength associated to the ˛-particle at time zero is much smaller than
the spatial localization of the spherical wave (semi-classical regime);

(ii) the spatial localization of the spherical wave, the “diameter” of the atoms and
the effective range of the interaction between ˛-particle and atoms are much
smaller than the macroscopic distance ja1j;

(iii) the ionization energy of the atoms and the strength of the interaction between
˛-particle and atoms are much smaller than the initial kinetic energy of the
˛-particle (quasi-elastic regime).

We also introduce the time 
j , j D 1; 2, as the time spent by a classical particle,
starting from the origin with velocity equal to the mean isotropic velocity of
the spherical wave, to reach the atom in aj . We remark that, under the above
assumptions, it is reasonable to consider 
1 and 
2 as the collision times of the
spherical wave emerging from the origin with the first atom in a1 and the second
atom in a2.

Our aim is the consider the time evolution of the three-particle system up to
second order in perturbation theory and to compute the probability P2.t/ that both
atoms are ionized for t > 
2.

The result we find is in agreement with the original Mott’s analysis and it can be
roughly summarized as follows:

P2.t / is negligible unless the positions a1, a2 of the atoms are aligned with the origin.

For a more precise formulation of the result and for the proof we refer to [14, 17].
Here we only add some remarks.

– The assumptions (i)–(iii) are crucial for the validity of the result, in the sense that
a different qualitative behavior of the system must be expected if the assumptions
on the physical parameters of the model are modified.

– Since in a cloud chamber one observes the (amplified) effect of the ionization of
the atoms, the result shows that one can only observe straight trajectories.

– The method of the proof is essentially based on a representation formula for
P2.t/ in terms of highly oscillatory integrals and on the asymptotic analysis of
such integrals using stationary and non-stationary phase methods.

In the rest of this section we shall give some technical details of a result obtained in
[32] (see also [17]) which, in our opinion, clarifies the dynamical mechanism that
underlies Mott’s result. Once more, the material presented in the rest of this section
can be passed over by the reader who wants to avoid mathematical details.

Let us consider a simpler model of a non relativistic quantum system made of
only two spinless particles in dimension three of masses M and m. The latter is
bound by an harmonic potential of frequency ! around the equilibrium position a.
The first particle plays the role of the ˛-particle while the harmonically bounded
particle plays the role of an electron in a very simplified version of model-atom with
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fixed nucleus. The interaction between the test particle and the harmonic oscillator
is described by a smooth two-body potential V .

Denoting by R the position coordinate of the ˛-particle and by r the position
coordinate of the harmonic oscillator, the Hamiltonian of the system in L2.R6/ is
given by

H D H0 C �V.ı�1.R � r//; �; ı > 0 (13.18)

whereH0 is the free Hamiltonian of the system

H0 D � „2
2M

�R � „2
2m

�r C 1

2
m!2.r � a/2 (13.19)

We recall that the eigenfunctions of the harmonic oscillator are

'n.r/ D 	�3=2�n.	�1.r �a//; 	 D
r

„
m!

; �n.x/ � �n1.x1/�n2.x2/�n3.x3/

(13.20)

where n D .n1; n2; n3/ 2 N
3 and �nk is the Hermite function of order nk . In

particular the ground state corresponds to n D 0 D .0; 0; 0/.
Under the same kind of assumptions (i)–(iii) made above, we analyze the

evolution of this system when the initial state is a product state of a spherical
wave for the ˛-particle and the ground state for the oscillator. In order to satisfy
the assumptions, it is convenient to introduce a small parameter " > 0 and to fix

„ D "2 M D 1 � D " m D " ! D "�1 ı D " � D "2

(13.21)

where � is the spatial localization of the spherical wave. Under this scaling the
Hamiltonian becomes

H" D H"
0 C "2 V

�
"�1.R � r/

	
(13.22)

where

H"
0 D �"

4

2
�R C 1

"

�

�"
4

2
�r C 1

2
.r � a/2

�

(13.23)

The rescaled initial state takes the form

‰"
0.R; r/ D  ".R/'"0.r/ (13.24)

'"n.r/ D 1

"3=2
�n
�
"�1.r � a/

	
n 2 N

3 (13.25)
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In (13.24) the spherical wave  " is explicitly given by

 ".R/ D N"

"5=2�3=4
e
� jRj

2

2"2

Z

S2
d Ou e i

"2
v0 Ou�R (13.26)

where v0 > 0 is the mean isotropic velocity of the spherical wave and N" is a
normalization constant, with

lim
"!0N" D N0 � v0

4�
(13.27)

Notice that the spherical wave is obtained considering a wave packet localized in
momentum around v0 Ou, where Ou is a generic unit vector, and then taking an average
over all possible unit vectors of the sphere S2.

We are interested in asymptotic behavior for " ! 0 of the solution of the
Schrödinger equation of the system

U ".t/‰"
0 ; U ".t/ D e

�i t
"2
H"

(13.28)

for t > 
 , where


 D jaj
v0

(13.29)

is the (classical) collision time of the ˛-particle with the oscillator.
In order to formulate the result, we fix a reference frame such that

Oa D .0; 0; 1/; Oa � a

jaj (13.30)

and we introduce the following definition.
Let P " D P ".R; r/ be the function

P ".R; r/ D
X

n

P "
n .R/ '

"
n.r/ (13.31)

where P "
n is the wave packet for the ˛-particle given by

P "
n .R/ � P "

n .R1;R2;R3/ D C"
n

"3=2
Fn
�
R1

"
;
R2

"
; 0

�

e
� 1

2"2
.R3�Z"

n/
2C i

"2
v"nR3

(13.32)

C"
n D 2�5=4

i jaj2 e
i
" jnj
Ci jnj

2


2v20 (13.33)
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Fn.y/ � Fn.y1; y2; y3/ D e�i
jyj
2

2


�
e�n�0 � QV

��

�y1


;�y2



;�y3



� jnj
v0

�

(13.34)

Z"
n D jnj


v0
" (13.35)

v"n D v0 � jnj
v0
" (13.36)

In (13.34) we have used the notation Qf for the Fourier transform of a function f .
Let us briefly comment on the above definition. The function P " is an infinite

linear combination of product states, made of stationary states of the harmonic
oscillator and wave packets P "

n of the ˛-particle. Each P "
n is well concentrated,

for " small, in position around

R.0/ D .0; 0;Z"
n/ � Z"

n Oa (13.37)

and in momentum around

P.0/ D .0; 0; v"n/ � v"n Oa (13.38)

The free evolution at time t of P "
n , for " small, is again a wave packet well

concentrated in position around

R.t/ D Z"
n Oa C v"n Oa t (13.39)

and in momentum around P.0/ (the momentum is conserved). In particular, at time
t D 
 the wave packet is well localized in position around

R.
/ D Z"
n Oa C v"n Oa 
 D a (13.40)

i.e., around the position of the oscillator.
The wave packets P "

n play a crucial role in the asymptotic expression of the wave
function of the system for " small. More precisely, the following result holds.

Theorem Let us fix t > 
 . Then there exists C.t/ > 0, independent of ", such that

U ".t/‰"
0 D U "0 .t/‰"

0 C "2 U "0 .t/P " C E".t/ (13.41)

where

U "0 .t/ D e
�i t

"2
H"
0 (13.42)
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and

kE".t/k 	 C.t/ "3 (13.43)

For the proof (in the more general case of N � 1 harmonic oscillators) we refer to
[32]. Here we only comment on the result.

Using the expressions for the free propagator U "0 .t/, the initial state ‰"
0 and the

function P ", from (13.41) one has

�
U ".t/‰"

0

	
.R; r/ ' e

�i t
"2
E"0

h�
e
�i t

"2
h"0 "

�
.R/C "2

�
e
�i t

"2
h"0P "

0

�
.R/

i
'"0.r/

C"2
X

n¤0
e
�i t

"2
E"n
�
e
�i t

"2
h"0P "

n

�
.R/ '"n.r/ (13.44)

where E"
n denotes the energy level of the oscillator

E"
n D "

�

jnj C 3

2

�

; jnj D n1 C n2 C n3 (13.45)

and h"0 is the free Hamiltonian for the ˛-particle

h"0 D �"
4

2
�R (13.46)

In (13.44) the approximate wave function for t > 
 has been written as the sum of
two terms, distinguished for the different behavior of the oscillator (unperturbed or
excited). In the first one, the oscillator remains in its ground state and the ˛-particle
evolves according to

�
e
�i t

"2
h"0 "

�
.R/C "2

�
e
�i t

"2
h"0P "

0

�
.R/ (13.47)

i.e., the free evolution of the initial spherical wave slightly deformed by the free
evolution of the small wave packet P "

0 , emerging from the oscillator. The second
term is a sum over all possible excited states of the oscillator. In each term of the
sum, the evolution of the ˛-particle is given by "2 times

�
e
�i t

"2
h"0P "

n

�
.R/ (13.48)

i.e., the free evolution of the wave packet P "
n , n ¤ 0. As we already remarked,

each wave packet emerges at t D 
 from the excited oscillator with momentum v"n Oa
and, for t > 
 , it will be concentrated around the uniform classical motion (13.39),
which can be more conveniently rewritten as

R.t/ D a C
�

v0 � jnj
v0
"

�

.t � 
/ Oa (13.49)
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We emphasize that the result expressed in the theorem provides a physical
explanation of Mott’s result in the three-particle model (˛-particle plus two atoms
in a1, a2). In fact, if the collision with the first atom in a1 produces excitation
of the atom then, according to the above result, the ˛-particle is described by a
localized wave packet emerging from a1, with momentum along the direction Oa1.
As a consequence, the requirement that also the second atom in a2 is excited can be
satisfied only if such atom is hit by the wave packet, and this happens only if a2 lies
on the direction Oa1.

This explains why excitation of both atoms can occur only if their positions are
aligned with the origin.

13.6 Different Approaches and Open Problems

The simple models we analyzed should be considered as first steps in a branch of
research that we consider relevant and promising. In our opinion, there are different
strategies that might be exploited and open problems that would be well worth the
study.

As we mentioned above the initial spherical wave packet can be seen as a
continuous superposition of coherent states pointing toward all possible radial
directions. In fact, (13.26) is the rigorous formulation of this claim.

The partition (slicing) of the incoming ˛-wave in fuzzy coherent slices that move
as semiclassical waves (keeping their coherence until one of them interacts with a
real atom) can be deemed to be artificial. But the wave itself is a probability wave
and therefore has no objective reality. We are slicing something that does not exist
as a physical entity!

Indeed we are manipulating mathematical objects that enter into the mathemat-
ical framework by which quantum mechanics describes outcomes of experimental
observations; only part of this mathematical framework is given a direct physical
correspondence with experiments. The remaining part is there in order to give
a meaningful dynamics (meaningful D as close as possible to the dynamics of
material bodies). What counts is that the mathematical description we give be
consistent and our results indicate that the family of coherent states we suggest
as a “basis” in order to analyze the initial state of the ˛-particle is in fact the right
“pointer basis” for the problem under investigation.

In our opinion, this qualitative description can be turned into an effective
technical tool to examine details of the asymptotic evolution of the ˛-particle and
of the environment in models of a cloud chamber.

We recall that semiclassical waves propagate, under the Schrödinger equation,
keeping their barycenter on a classical path. Their shape changes slightly and their
dispersion is of order

p„. As soon as we write the initial state as a superposition of
such states, the problem is reduced to the interaction of a semiclassical wave with
an atom, leading to ionization. It should be noted that the semiclassical wave packet
remains such after the interaction with an atom only if the momentum transfer
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within the process is a little percentage of the initial momentum (almost zero-angle
scattering). In the physical problem we are considering, this implies that after the
interaction either the atom is in an excited state or the atom is ionized and low
energy electrons are emitted. In the real Wilson chamber, this last condition is
needed in order that the ionized atoms, acting as condensation seeds, may cause
the formation of liquid droplets (once more we stress that all we see and measure is
the formation of tracks of droplets in the cloud chamber). It is therefore reasonable
to restrict attention to the case in which the semiclassical wave packet retains its
identity during interaction, changing perhaps slightly its shape.

While the evolution of a semiclassical wave packet interacting with an external
potential has been extensively investigated [21, 25, 33, 35], semiclassical inelastic
scattering has not received, at the best of our knowledge, comparable attention
and any result in this direction would be welcome. We are planning to examine
this approach to the Mott’s problem in further work. Here, we want to focus
briefly on the connection of the strategy outlined above with the analysis of Michel
Bauer and Denis Bernard on the wave function collapse in repeated quantum non
demolition measurements [6]. In their paper these authors investigate the evolution
of a microscopic system together with a probe. The latter is meant to perform a
sequence of “nondemolition” measurements on the system.

The nondemolition character of the measurement is turned into the main
assumption of authors’ analysis: let H � HS ˝ HP (S standing for system and
P for probe) be the Hilbert space of the states of the whole system. The assumption
reads: there exist an orthonormal basis �n in HS and unitary operators Un in the
Hilbert space of the probe HP such that the evolution of the whole system, starting
from an initial state �n ˝‰, is given by the unitary operator I ˝ Un. In short, each
state in the chosen basis of the microscopic system evolves unaltered, whereas the
state of the probe evolves according to a Schrödinger dynamics whose generator
depends on the microscopic system state.

From the assumption stated above, the authors proceed to prove a list of
interesting results making use only of classical probability tools. In summary, after
a large number of repeated measurements processes, obeying at each time the main
assumption,

• the state of the system tends to one of the states �n with probability j.�n; �/j2 if
� is the initial state of the system.

• A limit probability measure on the states of the probe is uniquely associated to
each state �n of the system.

The authors give also results on the rate of convergence of the sequences to the final
states.

Let us associate the chosen basis with a “suitable slicing” of the radial initial
condition in a cloud chamber model and each Un with the response of a model atom
in the chamber to each scattering event with a particle initially in the state �n. It is
reasonable to predict (and it should be feasible to prove) that, in the limit of quasi-
elastic, small angle scattering, the system ˛-particle plus model-atoms fulfill the
assumption of Bauer and Bernard. In this scenario, the ˛-particle is submitted to a
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sequence of non demolition measurements by the atoms of the gas in the chamber.
The coherent states in which the initial state is analyzed are the “pointer basis” of
the alpha particle, whereas the tracks are the pointer states of the probe.

For a given model of environment, it would be interesting to extend the results
to more general initial conditions of the microscopic system and to cases in which
external fields act on the microscopic system.

Another crucial step ahead would be to consider more realistic models of
quantum environments. As was already pointed out by Hepp in [24], complete
decoherence requires an infinite time in models where a quantum particle evolves
in an environment made up of non-interacting quantum subsystems. An alternative
way to reach complete decoherence would be to consider an ever larger number of
environment constituents in a finite region.

This idea brought us to consider models of environment made up of multi-
channel point interactions (one can think either of point atoms with a finite
number of energetic levels or of localized spins). There are many advantages in
working with such a kind of solvable models. To mention the most important, a
non-perturbative theory is practicable (the environment is not an unmanageable
multi-particle system) and it is possible to investigate the asymptotic limit of
infinitely many scattering centers in a finite volume. A quite detailed introduction to
these models is given in Chapter 3 of the book [17].

A more realistic choice would be to model the environment with self-interacting
fields (e.g., spins ferromagnetically interacting among them), initially in a genuine
meta-stable state. The non-linear self-interaction would enhance the response of the
environment, which might show macroscopic modifications in finite time.

In conclusion a complete description of the mechanism of production of the
tracks in a cloud chamber still escapes us, but we have outlined the role of quantum
mechanics, of semi-classical analysis and of stationary phase techniques within the
time-dependent Schrödinger equation in shedding some light on the investigation of
the classical-quantum border.
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Chapter 14
Quantum Mechanics of Time

Andreas Ruschhaupt and Reinhard F. Werner

We start by summarising some basic concepts in the research field of quantum
mechanics of time. In the following, we will review some recent results namely
a new version of an energy-time uncertainty relation and a no-go theorem about
tunnelling times.

14.1 Introduction

The question “Where is a particle at a given time t?” is discussed theoretically in
every quantum mechanics book. On the other hand, the similar question “When is
a particle at a given position x?” is rarely discussed in these books. In fact, the
theoretical study of time observables has often been in practice almost abandoned
if not totally banned. The main reason for this banning has been Pauli’s theorem
which states that time operators cannot be self-adjoint. This has led to the phrase
“time is only a parameter” in quantum mechanics which is still repeated by some
physicists when discussing arrival times.

The situation is different in experiments: in a majority of experiments, there are
detectors in the laboratories waiting for a particle to arrive, while measurements of
positions at a fixed time are met less often. For a long time, the motion of particles
in these experiments could be approximated with high accuracy by a classical
trajectory and there has been no need to use a quantum mechanical description
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of arrival times. Nevertheless, with increasing control possibilities in quantum
experiments and the ability to reach lower and lower velocities, the question of a
quantum mechanical description of time quantities will become more important and
a detailed investigation of these might be essential.

Note, there is unfortunately a confusion with the expression “time-of-flight”
measurements. These measurements are quite standard in the cold-atom community
and they essentially monitor the position probability density and not a quantum-
mechanical time-of-arrival density.

In the next section we give a brief overview about some general strategies and
approaches to deal theoretically with arrival times and tunnelling times in quantum
mechanics. For more extensive reviews on the arrival time and time in quantum
mechanics see [1, 2]. In Sect. 14.3, we review some recent results about time-
energy uncertainty relations. We present some recent results about tunnelling times
in Sect. 14.4.

14.2 Overview

14.2.1 Arrival Times

Consider a quantum system with Hilbert space H and time-independent Hamil-
tonian H . Starting from some initial state  0 2 H at time t D 0, we would
like to determine the probability distribution of arrival times �.t/ at some detector
or counter which is at some fixed position xD . For simplicity, we will assume
in the following a one-dimensional setting and let xD D 0. There are different
approaches to this problem, varying in the degree of detail with which the detector is
described.

Covariant Arrival Observables The obvious approach might be to find an
“idealised” observable T describing arrival times in the same manner as there is,
for example, an “idealised” position observable X , idealised in the sense that X is
independent of details of the real detector.

Pauli’s theorem states that this arrival-time observable T cannot be represented
by a self-adjoint operator (as already mentioned, this fact is often misinterpreted
by drawing the incorrect conclusion that “time is only a parameter” and “there
is no arrival-time observable”). Pauli’s theorem just means that the arrival-time
observable has to be represented by a positive operator valued measure (POVM)
[3–5], a generalisation of the “usual” way of describing observables by a self-
adjoint operator.

A requirement for arrival-time observables is often its transformation behaviour:
starting from the time-evolved state  t0 D exp.�iHt0=„/ 0 we should get the same
arrival time distribution �, but shifted by t0. Covariant arrival observables with this
property have been studied extensively [6–9]. The simplest example for the free
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evolutionH D P2=.2m/ is Kijowski’s distribution [6]

�.t/ D
ˇ
ˇ
ˇ
ˇ

Z 1

0

dp

r
p

2�m„e
�ip2t=.2m„/ 0.p/

ˇ
ˇ
ˇ
ˇ

2

:

However, transformation behaviour alone is not sufficient to single out a convincing
model for a given experimental counter array. The most general expression of a
covariant arrival-time observable has been derived in [7]. Moreover, this approach
requires the Hamiltonian to have a purely continuous spectrum and is hence limited
to infinite dimensional Hilbert spaces.

Absorptive Arrival Times While the previous approach is independent of the
details of the detection process and the detector, the following approach is based on
a phenomenological modelling of the detector and the detection process. It was first
worked out in detail in [10]. The detector is described phenomenologically by a non-
Hermitian term (also called complex potential) �iD (where D is some self-adjoint
operator) added to the Hamiltonian H , which is thus replaced by K D H � iD.
Thereby the unitary time evolution operator Ut D exp.�iHt=„/ is modified to a
semigroup of contractions, i.e., operators Bt D exp.�iKt=„/ (t � 0) such that
the norm of the wavefunction  t D Bt 0 is no longer preserved; it is decreasing,
i.e. the wavefunction is “absorbed” by the detector. The loss of the norm of the
wavefunction,Nt D 1� k tk2, is interpreted as the probability that the particle did
arrive (or has been detected) before time t .

Thus, given an initial quantum state  0, we get the arrival probability density
�.t/ for t > 0 by

�.t/ D � 1
p

d

dt
Nt D 1

p
h t jD t i (14.1)

where p D 1 � limt!1Nt is the probability that the particle is detected at all,
i.e. the total absorption probability. More details can be also found in [11, 12]. An
immediate advantage of the absorptive arrival time approach is that it also applies
directly to certain finite dimensional models in contrast to covariant arrival-time
observables.

Detector Models At the other extreme we can make a more detailed detector
model. For example, in [13] and in following publications, a more realistic atom-
laser model describing an arrival-time measurement by quantum-optical means has
been proposed and examined, see [14] for a review. The basic idea is that a region
of space is illuminated by a laser. We assume a two-level atom being initially in
its ground state and that its excited state should decay very fast. Moreover, the
laser should be on resonance with the transition ground-excited state. If the atom
is now entering the illuminated region the atom will start emitting photons which
are detected. The first photon emission can be taken as a measure of the arrival time
of the atom in that region. It is possible to connect this model to the approaches
described previously in certain limits, see the review [14] for details.
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14.2.2 Tunnelling Times

One could ask also for other time quantities than the single arrival time. In the simple
case of a massive particle moving in one dimension through a localised (tunnel)
potential, the question of the “time spent in the tunnel” is especially interesting,
and has given rise to extensive discussion some time ago (see e.g. [15–19] and the
references therein).

An old observation related to tunnelling times is the so called Hartman effect
[15], which states that the transmitted part of a wave function appears to move
faster through the tunnel than the corresponding wave function in the free state:
More precisely, after a long rectangular barrier and for a wave function of narrow
momentum distribution, in leading order the transmitted pulse appears at the end of
the tunnel instantaneously. However, all this is true only for the shape of the wave
function disregarding normalisation. But obviously, especially for long tunnels, for
which the gain in speed would only be noticeable, the transmission probability is
exponentially small.

It has been suggested that the Hartman effect allows superluminal signal trans-
port [20], nevertheless to utilise the Hartman effect for a faster signal transmission,
we would have to analyse the trade-off between transmission probability and
transmission speed, see Sect. 14.4 for more details.

14.2.3 Event-Enhanced Quantum Theory and Time Properties

Blanchard and Jadczyk proposed the phenomenological formalism of Event-
Enhanced Quantum Theory (EEQT) [21–24]. The main idea of EEQT is that
the total system is split in a quantum part and a classical part. The states of the
quantum part are wave functions, which are not directly observable, they are the
“hidden” variables of the theory. On the other hand, the states of the classical parts
can be observed without disturbing them. “Events” are changes of the classical state
(which in general also comes together with a change of the quantum state); they do
not need an observer for their generation.

Let us summarise briefly the formalism of EEQT. We assume that the classical
part has only m possible discrete states. Statistical states of the total system can
be represented by m � m diagonal matrices where the diagonal elements �j are
positive operators on the Hilbert space HQ corresponding to the quantum part and
fulfil

Pm
jD1 �j D 1. The coupling between classical and the quantum system is

described phenomenologically by linear operators g˛ˇ W HQ ! HQ with g˛˛ D 0.
Moreover there are Hamiltonians OH˛ . The time evolution of the total system is given
by a set of master equations

P�˛ D �i Œ OH˛; �˛�C
X

ˇ

g˛ˇ �ˇg
C
˛ˇ � 1

2
f
X

ˇ

gCˇ˛gˇ˛; �˛g (14.2)



14 Quantum Mechanics of Time 319

where f; g stands for the anticommutator. Another starting point is given by
a Piecewise Deterministic Process algorithm [24]. Repeating the algorithm and
averaging the outcome leads to a solution of the above set of master equations.

EEQT has also been used to discuss the question of arrival time [25] and
tunnelling times [26, 27]. In the case of arrival time it has also been shown how the
phenomenological couplings can be derived from a detection model [28]. While the
original formalism is non-relativistic, there are also relativistic extensions [29, 30]
which have been used to discuss relativistic arrival times [31].

14.3 Energy-Time Uncertainty Relation

From Heisenberg’s seminal 1927 paper [32], uncertainty relations have been
recognised as a fundamental feature of quantum mechanics. Heisenberg gives a
semi-classical heuristic discussion and his “uncertainties” are conceptually different
in different parts of his paper. Modern textbooks all agree on “the” uncertainty
relation, namely a version stated and proved by Kennard [33] in the same year
Heisenberg’s paper appeared. Kennard achieved an important clarification both
conceptually, by defining the uncertainties as the standard deviation of operationally
well-defined probability distributions, and also quantitatively, so it becomes possible
to say that a particular experiment realises an uncertainty product within 3 % of the
absolute minimum.

This clarification was so successful that other aspects of Heisenberg’s paper, like
his discussion of the precision of a position measurement by microscope versus the
momentum disturbance by the measurement, fell into disrepute. Nevertheless, these
ideas are not only heuristically meaningful, but can be made operationally precise
and proved as theorems in the quantum formalism [34, 35].

The situation becomes more obscure in the literature when we go to energy-time
uncertainty relations. In most cases, energy-time uncertainty relations are invoked
in a very handwaving fashion only. There are very few conceptually clear and
quantitatively meaningful formulations (see [36] for a review). For covariant arrival-
time observables a Kennard-like uncertainty relation can be proved strictly [37].

It was shown recently that this is also true for absorptive arrival times [38]; we
will review this result in the following. The goal is to find a relation which is related
as closely as possible to Kennard’s interpretation of�P and�Q. One the one hand,
let �E be the standard deviation of the energy observable (the Hamiltonian) of the
system at initial time, defined through .�E/2 D h 0jH2 0i � h 0jH 0i2. On
the other hand, there should be a detection process modelled phenomenologically
by an absorbing potential leading to the arrival-time probability distribution �.t/,
see Eq. (14.1), We denote by hT i and hT 2i the first and second moment of this
probability distribution �.t/ and set .�T /2 D hT 2i � hT i2.

We can hence look for a universal lower bound on the product�T ��E . Without
further conditions such a lower bound cannot hold. Indeed, �T can be computed
knowingH � iD and  0, whereas�E depends on H and  0 only. For example, if
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we set D D ˛�, we get p D 1 and �.t/ D 2˛e�2˛t independently of  0. Clearly,
this cannot imply any constraint on the energy distribution.

Nevertheless, surprisingly, only a mild and natural assumption on the initial state
is required to achieve an uncertainty relation, namely (heuristically) that at initial
time the particle is not already in the detector! More formally, if D describes the
detector as explained above, we wantD D 0, orH D K whereK D H � iD.
Since these operators are usually unbounded, we also have to specify the domains.
Writing domX for the domain of the operator X , we require that  2 domK2 \
domH and H D K . Under these conditions it has been proved in [38] that

�T ��E >
„
2

p
p : (14.3)

where p is the total detection probability. The dependence on p might be unex-
pected having in mind heuristic derivations. Nevertheless, this dependence can be
understood qualitatively by the fact that for a small detection operatorD only a few
particles are ever detected (p  0), so observing arrival times cannot imply a strong
constraint on �E . The exact power

p
p can only be explained in the mathematical

proof in [38].
The arrival time distribution �.t/ is always supported by the positive time axis

RC. Therefore, the mean arrival time hT i is always positive, and can take the place
of �T in the uncertainty relation. Under the same conditions it was proved in [38]
that

hT i ��E � C „ p
p ; (14.4)

where C D 2.�Z1=3/.3=2/  1:376 is a numerical constant involving the first
negative zero Z1 of the Airy function.

The basic idea of the proofs of Eqs. (14.3) and (14.4) is a so-called dilation
construction; the system is mapped to a “larger” Hilbert space in such a way
that energy and time become conjugate self-adjoint operators. In this “larger”
system, standard theorems about conjugated self-adjoint operators (like position and
momentum) can be used. For the details we refer to [38].

As an example, let us consider the simplest possible system to which the
relations (14.3) and (14.4) apply. Unlike the covariant observable approach (in
which the spectrum of H has to be continuous) finite dimensional systems are now
included. We consider a two-level system with

H D „
2

�
0 �

� 0

�

; D D „
2

�
0 0

0 	

�

(14.5)

where�; 	 > 0 are parameters. The relevant quantity is 	=�, since we could make
�=2 D „ D 1 by a choice of units. As the initial state we take  0 D .1; 0/T , so our
basic assumption D 0 D 0 is satisfied. Obviously, hH i D 0 and hH2i D „2

4
�2,
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so �E D „
2
�. One can explicitly calculate  t D exp.�i.H � iD/t=„/ 0,

and hence compute the probability density �.t/. The moments are also readily
calculated. Both hT i and �T attain their minimum when 	 D p

2�. Then the
uncertainty inequalities are satisfied as 1=

p
2  0:707 > 0:500 for Eq. (14.3), andp

2  1:414 > 1:376 for Eq. (14.4), so hT i�E reaches the minimum to within 3 %!

14.4 Tunnelling Time

Let us look again at tunnelling time and the Hartman effect. As we said before, in
any attempt to utilise the Hartman effect for a faster signal transmission, we would
have to analyse the trade-off between transmission probability and transmission
speed. It has been proved recently in [39] that this trade-off is always trivial: when
damping is taken into account, transmission through a tunnel will always slow down
the signal. So even if the arrival time probability density for the transmitted particles
peaks earlier than for the free particles, we must look at the integrated density (i.e.,
the probability for the particles to arrive before a given deadline t) and compare this
to the corresponding quantity for the free particles.

Setting We want to compare two settings. In the first case, we have free evolution
in one dimension described the Hamiltonian H0 D P2 (with m D 1=2;„ D 1).
In the second setting we have also a tunnel potential V such that the Hamiltonian
is HV D H0 C V . V should be compactly supported and bounded. In addition,
it is essential that H has no bound states. The particle should be prepared on the
left-hand side of the potential and the detection should happen on the right-hand
side.

Rules of the Race First we have to fix the rules of the race between the free and
the tunnelling setting: we need to choose a precise notion of arrival detection, of
the equality of initial wave functions, and of the equality of detectors for tunnelling
and free dynamics. The equality of initial states is a non-trivial issue, because the
two states are subject to different dynamical evolutions. So at least we need to fix a
reference time. In the following we will choose t D �1, i.e., asymptotic equality
of the incoming states in the two settings in the sense of scattering theory. We fix the
direction from which the particles are coming by choosing input states with positive
momentum.

On the detection side, we will choose a covariant arrival-time observable to
describe the detectors, see Sect. 14.2. Again this raises the issue of how to compare
the two cases, because the covariance condition explicitly depends on the time
evolution, and an observable can be covariant with respect to only one of them.
Again scattering theory helps, by defining a bijective correspondence between the
respective sets of covariant observables: we identify observables, which give the
same probability distributions on states coinciding for t ! C1.
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For a fixed initial state, a fixed tunnelling potential and a fixed arrival-time
observable, the arrival probability �0.t/ resp. �V .t/ can be calculated in the free
resp. tunnelling setting. In addition, if a final time tf is fixed, the total probability
that the particle has been arrived can be calculated by

P0=V D
Z tf

�1
dt �0=V .t/ (14.6)

The comparison is now easy, if PV > P0 (i.e. the probability that the particle has
been detected with tunnel potential is greater than the detection probability in the
free case) then the tunnelling setting has “won” and tunnelling might be useful for
sending some information for example encoded in the internal state of the particle.
On the other hand, if PV < P0 then the tunnelling setting is “useless” for increasing
the detection probability.

Result of the Race The question which has been studied in [39] is now: is there
any initial wavefunction, any tunnel potential, any covariant arrival-time observable
and any final time such that PV > P0 (i.e. such that the total detection probability
is increased by tunnelling and the tunnelling setting might be useful for sending
information faster than in the free case)?

The answer is: NO! We always have P0 � PV . This result is perhaps not
surprising; nevertheless, what is surprising is the generality in which the result can
be proved (using general results from scattering theory and the theory of covariant
observables): the result is true for any incoming state, any tunnel potential, any
detector and any final time!
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Chapter 15
Localization and Entanglement in Relativistic
Quantum Physics

Jakob Yngvason

15.1 Introduction

These notes are a slightly expanded version of a lecture presented in February
2012 at the workshop “The Message of Quantum Science—Attempts Towards a
Synthesis” held at the ZIF in Bielefeld. The participants were physicists with a wide
range of different expertise and interests. The lecture was intended as a survey of a
small selection of the insights into the structure of relativistic quantum physics that
have accumulated through the efforts of many people over more than 50 years.1 This
contribution discusses some facts about relativistic quantum physics, most of which
are quite familiar to practitioners of Algebraic Quantum Field Theory (AQFT)2 but
less well known outside this community. No claim of originality is made; the goal
of this contribution is merely to present these facts in a simple and concise manner,
focusing on the following issues:

• Explaining how quantum mechanics (QM) combined with (special) relativity, in
particular an upper bound on the propagation velocity of effects, leads naturally
to systems with an infinite number of degrees of freedom (relativistic quantum
fields).

1Including, among many others, R. Haag, H. Araki, D. Kastler, H.-J. Borchers, A. Wightman, R.
Streater, B. Schroer, H. Reeh, S. Schlieder, S. Doplicher, J. Roberts, R. Jost, K. Hepp, J. Fröhlich, J.
Glimm, A. Jaffe, J. Bisognano, E. Wichmann, D. Buchholz, K. Fredenhagen, R. Longo, D. Guido,
R. Brunetti, J. Mund, S. Summers, R. Werner, H. Narnhofer, R. Verch, G. Lechner, . . . .
2Also known as Local Quantum Physics [55].
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• A brief summary of the differences in mathematical structure compared to the
QM of finitely many particles that emerge form the synthesis with relativity, in
particular different localization concepts, type III von Neumann algebras rather
than type I, and “deeply entrenched” [36] entanglement,

• Comments on the question whether these mathematical differences have signifi-
cant consequences for the physical interpretation of basic concepts of QM.

15.2 What is Relativistic Quantum Physics?

According to E. Wigner’s groundbreaking analysis from 1939 of relativistic sym-
metries in the quantum context [92] any relativistic quantum theory should contain
as minimal ingredients

• A Hilbert space H of state vectors.
• A unitary representation U.a;ƒ/ of the inhomogeneous (proper, orthochronous)

Lorentz group (Poincaré group) P"C on H.3 Here a 2 R
4 denotes a translation of

Minkowski space andƒ a Lorentz transformation.4

The representations were completely classified by Wigner in [92].
The representation U.a; 1/ DW U.a/ of the translations leads directly to the

observables energy P0 and momentum P,  D 1; 2; 3 as the corresponding
infinitesimal generators5:

U.a/ D exp

0

@i
3X

D0
P a

1

A : (15.1)

The stability requirement that the energy operator, P0, should be bounded below
implies that the joint spectrum of the commuting operators P is contained in
the forward light cone VC. This is called the relativistic spectrum condition. The
operator of the mass is M D .

P3
D0 P P/

1=2. In an irreducible representations

3More precisely, also representations “up to a phase” are allowed, which amounts to replacing P"

C

by its universal covering group ISL.2;C/.
4For simplicity of the exposition we refrain from discussing the possibility that the Lorentz
transformations act only as automorphisms on the algebra of observables but are not unitarily
implemented on the Hilbert space of states under consideration, as can be expected in charged
superselection sectors of theories with massless particles [23, 50].
5Here, and in the following, units are chosen so that Planck’s constant, „, and the velocity of light,
c, are equal to 1. The metric on Minkowski space is g� D diag .1;�1;�1;�1/.
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of P"C fulfilling the spectrum condition the mass has a sharp value m � 0. These
representations fall into three classes:

1. The massive representations Œm; s� with the mass m > 0 and the spin s D
0; 1

2
; 1; : : : labeling the irreducible representations of the stabilizer group SU.2/

of the energy-momentum vector in the rest frame.
2. The massless representations Œ0; h� of finite helicity h D 0;˙ 1

2
;˙1; : : :

corresponding to one dimensional representations of the stabilizer group of a
light-like energy-momentum vector (the two-dimensional Euclidean group E2).

3. Massless representations of unbounded helicity (“infinite spin representations”)
corresponding to infinite dimensional representations of the stabilizer groupE2.

Besides energy and momentum, further observables, namely the angular momentum
operators and the generators of Lorentz boosts, follow from the representation
U.0;ƒ/ of the homogeneous Lorentz group. In Sect. 15.3.5 below we shall see how
an intrinsic localization concept (“modular localization”) can be associated with the
latter, but first we discuss the problems that arise if one tries to mimic the procedure
in non-relativistic QM and define localization via position operators for particles.

15.2.1 Problems with Position Operators

In non-relativistic quantum mechanics, spatial localization of state vectors is
determined through the spectral projectors of position operators. For instance, a
single particle state with wave functions  .x/ is localized in a domain � � R

3

if and only if the support of  lies in �, which means that E� D  with
E� the multiplication operator by the characteristic function of �. Time evolution
generated by the non-relativistic Hamiltonian H D 1

2m
P2 D � 1

2m
r2 immediately

spreads out the localization in the sense that for any pair �;�0 of disjoint domains
so that E�E�0 D 0 we have exp.itH/E� exp.�itH/E�0 ¤ 0 for all t ¤ 0, no
matter how far � and �0 are from each other. Since there is no upper bound to the
velocity of propagation of effects in non-relativistic QM this is not a surprise. In a
relativistic theory, on the other hand, for instance with H D .c2P2 Cm2c4/1=2, one
might expect that exp.itH/E� exp.�itH/E�0 stays zero as long as cjt j is smaller
than the spatial distance between the two domains. This, however, is not the case,
due to the analyticity implied by the relativistic spectrum condition:6

Theorem 1 (Localization via Position Operators is in Conflict with Causality)
Suppose there is a mapping � 7! E� from subsets of space-like hyperplanes in

6In this form the result was first published by J.F. Perez and I.F. Wilde in [75]. See also [65] for the
same conclusion under slightly weaker premises.
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Minkowski space into projectors on H such that

(1) U.a/E�U.a/�1 D E�Ca
(2) E�E�0 D 0 if �;�0 space-like separated.

Then E� D 0 for all �.

Proof The spectrum condition implies that the function a 7! U.a/‰ has, for every
‰ 2 H, an analytic continuation into R

4 C iVC � C
4. The second condition

(2) means that hE�‰;U.a/E�‰i D h‰;E�E�CaU.a/‰i D 0 on an open set in
Minkowski space. But an analytic function that is continuous on the real boundary
of its analyticity domain and vanishing on an open subset of this boundary vanishes
identically.7 ut
The conclusion that can be drawn from this result is that localization in terms of
position operators is incompatible with causality in relativistic quantum physics.8

This dilemma is resolved by realizing that the relevant concept in relativistic
quantum physics is localization of quantum fields rather than localization of wave
functions of particles in position space. The space-time points x appear as variables
of the quantum field operators ˆ˛.x/ (with ˛ a tensor or spinor index). Causality
manifests itself in commutativity (or anticommutativity) of the operators at space-
like separation of the variables.

Taken together, covariance w.r.t. space-time translations, the spectrum condition
and local (anti)commutativity imply that the dependence of field operators on the
coordinates is by necessity singular, and well defined operators are only obtained
after smearing with test functions. This means that quantum fields are operator-
valued distributions rather than functions [83, 91], i.e., only “smeared” operators
ˆ˛.f / with f a test function on space-time are well defined. Localization of field
operators at a point is thus a somewhat problematic concept,9 while localization in
a domain of space-time (the support of the test function f ) has a clear meaning.

These ideas are incorporated in the general conceptual framework of Algebraic
Quantum Field Theory (AQFT), also called Local Quantum Physics (LQP) [6,
25, 55, 56]. Here the emphasis is on the collection (“net”) of operator algebras
generated by quantum field operators localized in different domains of space-time.
The quantum fields themselves appear as auxiliary objects since many different
quantum fields can generate the same net of algebras. The choice of some definite
field to describe a given net is somewhat analogous to the choice of a coordinate
system in differential geometry. In some cases the net is even defined without any
reference to quantum fields in the traditional sense, and important general results of
the theory do not, in fact, rely on a description of the net in terms of operator-valued
distributions.

7This follows from the “edge of the wedge” theorem, that is a generalization of the Schwarz
reflection principle to several complex variables, see, e.g., [83].
8This objection does not exclude approximate localization in the sense of Newton and Wigner [73].
9Field operators at a point can, however, be defined as quadratic forms on vectors with sufficiently
nice high energy behavior.
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15.3 Local Quantum Physics

15.3.1 The General Assumptions

The basic ingredients of a model in LQP are:

• A separable Hilbert space H of state vectors.
• A Unitary representation U.a;ƒ/ of the Poincaré group P"C on H.10

• An invariant, normalized state vector � 2 H (vacuum), unique up to a phase
factor.

• A family of *-algebras F.O/ of operators11 on H (a “field net”), indexed by
regions O � R

4 with F.O1/ � F.O2/ if O1 � O2.isotony/:

The requirements are:

R1. Local (anti-)commutativity: F.O1/ commutes with F.O2/ if O1 and O2

space-like separated. (Or, in the case of Fermi statistics, commutes after a
“twist” of the fermionic parts of the algebras, cf. [11], Eq. 33b.)

R2. Covariance: U.a;ƒ/F.O/U.a;ƒ/�1 D F.ƒO C a/.
R3. Spectrum condition: The energy momentum spectrum, i.e., the joint spectrum

of the generators of the translations U.a/ lies in VC.
R4. Cyclicity of the vacuum: [OF.O/� is dense in H.

Remarks

• The operators in F.O/ can intuitively be thought of as generating physical
operations that can be carried out in the space-time region O.

• Usually (but not always!) F.O/ is nontrivial for all open regions O.
• Associated with the field net fF.O/gO	R4 there is usually another net of operator

algebras, fA.O/gO	R4, representing local observables and commuting with the
field net and itself at space-like separations. Usually this is a subnet of the field
net, selected by invariance under some (global) gauge group.12

10More generally, a representation of the covering group ISL.2;C/.
11For mathematical convenience we assume that the operators are bounded and that the algebras
are closed in the weak operator topology, i.e., that they are von Neumann algebras. The generation
of such algebras from unbounded quantum field operators ˆ˛.f / is in general a nontrivial issue
that is dealt with, e.g., in [18, 45]. In cases when the real and imaginary parts of the field operators
are essentially self-adjoint, one may think of the F.O/ as generated by bounded functions (e.g.,
spectral projectors, resolvents, or exponentials) of these operators smeared with test functions
having support in O. More generally, the polar decomposition of the unbounded operators can
be taken as a starting point for generating the local net of von Neumann algebras.
12In the theory of superselection sectors, initiated by Borchers in [14] and further developed in
particular by Doplicher et al. in [39–42], the starting point is the net of observables while the field
net and the gauge group are derived objects. For a very recent development, applicable to theories
with long range forces, see [26].



330 J. Yngvason

Thus, the operators in F.O/ can have two roles:

1. They implement local transformations of states13 ! in the sense of Kraus
[62], i.e.,

! 7!
X

i

!.K�i � Ki/ (15.2)

with Ki 2 F.O/.
2. The self-adjoint elements of A.O/ correspond to physical properties of the

system that can, at least in principle, be measured in O.

Already in the mid 1950s Rudolf Haag [53, 54] had the fundamental insight that
information about interactions between particles, that emerge asymptotically for
large positive or negative instances of time but are usually not unambiguously
defined at finite times, is already encoded in the field net. In order to determine
the particle spectrum of a given theory and compute scattering amplitudes it is not
necessary to attach specific interpretations to specific operators in F.O/ besides
their localization.

15.3.2 Construction Methods

Traditionally, the main methods to construct models in quantum field theory have
been:

• Lagrangian field theory plus canonical quantization. This leads rigorously to free
fields and variants like generalized free fields, Wick-powers of such fields etc.
that satisfy the Wightman-Gårding axioms [13, 60, 83, 91]. Perturbation theory
plus renormalization leads (also rigorously!) to theories with interactions defined
in terms of formal power series in a coupling constant. (See [21] for a modern,
rigorous version of perturbation theory for quantum fields.)

• Constructive QFT (J. Glimm, A. Jaffe and others) [51]. Here the renormalization
of certain lagrangian field theories is carried out rigorously, without recourse
to perturbation theory. In this way, models of interacting fields in space-time
dimensions 1C1 and 1C2 have been obtained, but so far not in 1C3 dimensions.

• Conformal QFT in 1C 1 space-time dimensions based on Virasoro algebras and
other algebraic structures, see, e.g., [61] and references cited therein.

13Here and in the sequel, a state means a positive, normalized linear functional on the algebra
in question, i.e., a linear functional such that !.A�A/ � 0 for all A and !.1/ D 1. We shall
also restrict the attention to normal states, i.e., !.A/ D trace .�A/ with a nonnegative trace class
operator � on H with trace 1.
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It is a big challenge in QFT to develop new methods of construction and classifica-
tion. Recently, progress has been achieved through deformations of known models
[35, 52]. In particular, G. Lechner has shown that a large class of integrable models
in 1 C 1 dimensions, and many more, can be obtained from deformations of free
fields [63]. See also [1]. There is also a very recent approach due to Barata et al.
[9] based on Tomita–Takesaki modular theory [19, 87]. The latter concerns operator
algebras with a cyclic and separating vector, and applies to the local algebras of
relativistic quantum field theory because of the Reeh–Schlieder theorem discussed
next.

15.3.3 The Reeh–Schlieder Theorem

The Reeh–Schlieder Theorem was originally derived in the context of Wightman
quantum field theory in [80]. For general nets of local algebras as in Sect. 15.3.1,
one additional assumption is needed, weak additivity: For every fixed open set O0
the algebra generated by the union of all translates, F.O0Cx/, is dense in the union
of all F.O/ in the weak operator topology. If the net is generated by Wightman fields
this condition is automatically fulfilled.

Theorem 2 (Reeh–Schlieder) Under the assumption of weak additivity, F.O/�
is dense in H for all open sets O, i.e., the vacuum is cyclic for every single local
algebra and not just for their union.

Proof Write U.a/ for U.a; 1/. Pick O0 � O such that O0 C x � O for all x with
jxj < ", for some " > 0. If ‰ ? F.O/�, then h‰;U.x1/A1U.x2 � x1/ � � �U.xn �
xn�1/An�i D 0 for all Ai 2 O0 and jxi j < ". Then use the analyticity of U.a/ to
conclude that this must hold for all xi . The theorem now follows by appealing to
weak additivity. ut
Corollary The vacuum is a separating vector of F.O/ for every O such that its
causal complement O0 has interior points, i.e., A� D 0 for A 2 F.O/ implies
A D 0. Moreover, if A is a positive operator in F.O/ and h�;A�i D 0, then
A D 0.

Proof If O0 � O0, then AB� D BA� D 0 for all B 2 F.O0/.14 But F.O0/� is
dense if O0 is open, so A D 0. The last statement follows because the square root
of a positive A 2 F.O/ belongs also to F.O/. ut

14For simplicity we have assumed local commutativity. In the case of Fermi fields the same
conclusion is drawn by splitting the operators into their bosonic and fermionic parts.
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Remarks

• The Reeh–Schlieder Theorem and its Corollary hold, in fact, not only for the
vacuum vector � but for any state vector  that is an analytic vector for the
energy, i.e. such that eix0P 0 is an analytic function of x0 in a whole complex
neighborhood of 0. This holds in particular if  has bounded energy spectrum.

• No violation of causality is implied by the Reeh–Schlieder Theorem. The
theorem is “just” a manifestation of unavoidable correlations in the vacuum
state (or any other state given by an analytic vector for the energy) in relativistic
quantum field theory. (See the discussion of entanglement in Sect. 15.5.)

• Due to the cluster property, that is a consequence of the uniqueness of the
vacuum, the correlation function

F.x/ D h�;AU.x/B�i � h�;A�ih�;B�i (15.3)

for two local operators A and B tends to zero if x tends to space-like infinity.
If there is a mass gap in the energy momentum spectrum the convergence is
exponentially fast [48]. Thus, although the vacuum cannot be a product state
for space-like separated local algebras due to the Reeh–Schlieder Theorem, the
correlations become very small as soon as the space-like distance exceeds the
Compton wavelength associated with the mass gap [86, 94].

15.3.4 Modular Structures and the Bisognano–Wichmann
Theorem

A remarkable development in the theory of operator algebras was initiated 1970
when M. Takesaki published his account [88] of M. Tomita’s theory of modular
Hilbert algebras developed 1957–1967. In 1967 similar structures had indepen-
dently been found by R. Haag, N. Hugenholz and M. Winnink in their study of
thermodynamic equilibrium states of infinite systems [57], and in the 1970s the
theory found its way into LQP. Various aspects of these developments are discussed
in the review article [17], see also [85] for a concise account. On the mathematical
side Tomita–Takesaki theory is the basis of A. Connes’ groundbreaking work on the
classification von Neumann algebras [37].

The Tomita–Takesaki modular theory concerns a von Neumann algebra A
together with a cyclic and separating vector �. To every such pair it associates a
one parameter group of unitaries (the modular group) whose adjoint action leaves
the algebra invariant, as well as an anti-unitary involution (the modular conjugation)
that maps the algebra into its commutant A0. The precise definition of these objects
is as follows.

First, one defines an antilinear operator S0: A� ! A� by

S0A� D A��: (15.4)
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This operator (in general unbounded) is well defined on a dense set in H because
� is separating and cyclic. We denote by S its closure, S D S��0 . It has a polar
decomposition

S D J�1=2 D ��1=2J (15.5)

with the modular operator� D S�S > 0 and the anti-unitary modular conjugation
J with J 2 D 1.

The basic facts about these operators are stated in the following Theorem. See,
e.g., [19] or [88] for a proof.

Theorem 3 (Modular Group and Conjugation; KMS Condition)

�itA��it D A for all t 2 R; JAJ D A0 : (15.6)

Moreover, for A;B 2 A,15

h�;AB�i D h�;B��1A�i: (15.7)

Equation (15.7) is equivalent to the Kubo-Martin Schwinger (KMS) condition
that characterizes thermal equilibrium states with respect to the “time” evolution
A 7! ˛t .A/ WD �itA��it on A [57].16

Most of the applications of modular theory to LQP rely on the fact that the
modular group and conjugation for an algebra corresponding to a space-like wedge
in Minkowski space and the vacuum have a geometric interpretation. A space-like
wedge W is, by definition, a Poincaré transform of the standard wedge

W1 D fx 2 R
4 W jx0j < x1g: (15.8)

With W is associated a one-parameter family ƒW.s/ of Lorentz boosts that leave
W invariant. The boosts for the standard wedge are in the x0-x1 plane given by the
matrices

ƒW1 .s/ D
�

cosh s sinh s
sinh s cosh s

�

: (15.9)

There is also a reflection, jW , about the edge of the wedge that maps W into the
opposite wedge (causal complement) W 0. For the standard wedge W1 the reflection
is the product of the space-time inversion � and a rotation R.�/ by � around the
1-axis. For a general wedge the transformations ƒW.s/ and jW are obtained from

15Equation (15.7) is, strictly speaking, only claimed for A;B in a the dense subalgebra of “smooth”
elements of A obtained by integrating �itA��it with a test functions in t .
16Due to a sign convention in modular theory the temperature is formally �1, but by a scaling of
the parameter t , including an inversion of the sign, can produce any value of the temperature.
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those for W1 by combining the latter with a Poincaré transformation that takes W1

to W .
Consider now the algebras F.W/ of a field net generated by a Wightman

quantum field with the vacuum � as cyclic and separating vector. For simplicity
we consider the case of Bose fields.17 The modular objects � and J associated
with .F.W/;�/ depend on W but it is sufficient to consider W1. As discovered
by J. Bisognano and E. Wichmann in 1975 [10, 11] � and J are related to the
representation U of the Lorentz group and the PCT operator ‚ in the following
way:

Theorem 4 (Bisognano–Wichmann)

J D ‚U.R.�// and �it D U.ƒW1 .2�t//: (15.10)

15.3.5 Modular Localization

Modular localization [20] is based on a certain converse of the Bisognano–
Wichmann theorem. This concept associates a localization structure with any
(anti-)unitary representation of the proper Poincaré group PC (i.e., P"C aug-
mented by space-time reflection) satisfying the spectrum condition, in particular
the one-particle representations. Weyl quantization then generates naturally a local
net satisfying all the requirements (1–4) in Sect. 15.3.1, including commutativity (or
anti-commutativity) at space-like separation of the localization domains. A sketch
of this constructions is given in this subsection, focusing for simplicity on the case
of local commutativity rather than anti-commutativity.

LetU be an (anti-)unitary representation of PC satisfying the spectrum condition
on a Hilbert space H1. For a given space-like wedge W , let �W be the unique
positive operator satisfying

�it
W D U.ƒW.2�t// ; t 2 R ; (15.11)

and let JW to be the anti-unitary involution representing jW . We define

SW WD JW �
1=2
W : (15.12)

The space

K.W/ WD f� 2 domain�1=2
W W SW� D �g � H1 (15.13)

17Fermi fields can be included by means of a “twist” that turns anticommutators into commutators
as in [11].
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satisfies:

• K.W/ is a closed real subspace of H1 in the real scalar product Re h�; �i.
• K.W/ \ iK.W/ D f0g.
• K.W/C iK.W/ is dense in H1.18

• K.W/? WD f 2 H1 W Im h ; �i D 0 for all� 2 K.W/g D K.W 0/.

The functorial procedure of Weyl quantization (see, e.g., [79]) now leads for any
 2 SW K.W/ to an (unbounded) field operatorˆ. / on the Fock space

H D
M1

nD0H
˝symm

1 (15.14)

such that

Œˆ. /;ˆ.�/� D i Im h ; �i1: (15.15)

In particular,

Œˆ. 1/;ˆ. 2/� D 0 (15.16)

if  1 2 K.W/,  2 2 K.W 0/.
Finally, a net of algebras F.O/ satisfying requirements R1-R4 is defined by

F.O/ WD fexp.iˆ. // W  2 \W
OK.W/g00

: (15.17)

These algebras are in [20] proved to have � as a cyclic vector if O is a space-like
cone, i.e, a set of the form x CS

�>0 �D where D is a set with interior points that
is space-like separated from the origin.

Although this construction produces only interaction free fields it is remarkable
for at least two reasons:

• It uses as sole input a representation of the Poincaré group, i.e., it is intrinsically
quantum mechanical and not based on any “quantization” of a classical theory.
For the massive representations as well as those of zero mass and finite helicity
the localization can be sharpened by using Wightman fields [82, 83], leading to
nontrivial algebras F.O/ also for bounded, open sets O.

• The construction works also for the zero mass, infinite spin representations, that
can not be generated by point localized fields, i.e., operator valued distributions
satisfying the Wightman axioms [93]. Further analysis of this situation reveals
that these representations can be generated by string-localized fieldsˆ.x; e/ [67,
68] with e being a space like vector of length 1, and Œˆ.x; e/;ˆ.x; e/� D 0 if the
“strings” (rays) xC�e and x0C�0e0 with �; �0 > 0 are space-like separated. After

18Such real subspaces of a complex Hilbert space are called standard in the spatial version of
Tomita–Takesaki theory [81].
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smearing with test functions in x and e these fields are localized in space-like
cones.

Remarks

• Free string localized fields can be constructed for all irreducible representations
of the Poincaré group and their most general form is understood [68]. Their cor-
relation functions have a better high-energy behavior than for Wightman fields.
One can also define string localized vector potentials for the electromagnetic field
and a massless spin 2 field [66], and there are generalizations to massless fields
of arbitrary helicities [77].

• Localization in cones rather than bounded regions occurs also in other contexts:
(1) Fields generating massive particle states can always be localized in space-like
cones and in massive gauge theories no better localization may be possible [24].
(2) In Quantum Electrodynamics localization in light-like cones is to be
expected [26].

15.4 The Structure of Local Algebras

I recall first some standard mathematical terminology and notations concerning
operator algebras. The algebra of all bounded, linear operators on a Hilbert space H
is denoted by B.H/. If A � B.H/ is a subalgebra (more generally, a subset), then
its commutant is, by definition,

A0 D fB 2 B.H/ W ŒA;B� D 0 for all A 2 Ag: (15.18)

A von Neumann algebra is an algebra A such that

A D A00 ; (15.19)

i.e., the algebra is equal to its double commutant. Equivalently, the algebra is closed
in the weak operator topology, provided the algebra contains 1 that will always
be assumed. A (normal) state on a von Neumann algebra A is a positive linear
functional of the form !.A/ D trace .�A/, � � 0, trace � D 1. The state is a pure
state if ! D 1

2
!1 C 1

2
!2 implies !1 D !2 D !. Note that if A ¤ B.H/ then � is

not unique and the concept of a pure state is not the same as that of a vector state,
i.e. !.A/ D h ;A i with  2 H, k k D 1.

A vector  2 H is called cyclic for A if A is dense in H and separating if
A D 0 for A 2 A implies A D 0 (equivalently, if  is cyclic for A0).

A factor is a v.N. algebra A such that

A _ A0 WD �
A [ A0

	00 D B.H/ (15.20)
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which is equivalent to

A \ A0 D C1: (15.21)

The original motivation of von Neumann for introducing and studying this
concept together with Murray [69–71, 89] came from quantum mechanics: A
“factorization” of B.H/ corresponds to a splitting of a system into two subsystems.

The simplest case is

H D H1 ˝ H2; (15.22)

A D B.H1/˝ 1 ; A0 D 1 ˝ B.H2/; (15.23)

B.H/ D B.H1/˝ B.H2/: (15.24)

This is the Type I case, familiar from non-relativistic quantum mechanics of
systems with a finite number of particles and also Quantum Information Theory
[74] where the Hilbert spaces considered are usually finite dimensional. This
factorization is characterized by the existence of minimal projectors in A: If 2 H1

and E D j ih j, then

E D E ˝ 1 2 A (15.25)

is a minimal projector, i.e., it has no proper subprojectors in A.
At the other extreme is the Type III case which is defined as follows:
For every projector E 2 A there exists an isometryW 2 A with

W �W D 1 ; WW� D E: (15.26)

It is clear that for a type III factor, A _ A0 is not a tensor product factorization,
because a minimal projector cannot satisfy (15.26).

It is natural to ask whether we need to bother about other cases than type I in
quantum physics. The answer is that is simply a fact that in LQP the algebras F.O/
for O a double cone (intersection of a forward and a backward light cone) or a
space like wedge, are in all known cases of type III. More precisely, under some
reasonable assumptions, they are isomorphic to the unique, hyperfinite type III1
factor in a finer classification due to Connes [32, 37, 58]. This classification is in
terms of the intersection of the spectra of the modular operators for the cyclic and
separating state vectors for the algebra (Connes spectrum). The characteristic of
type III1 is that the Connes spectrum is equal to RC.

Concrete example of type III factors can be obtained by considering infinite
tensor products of 2 � 2 or 3 � 3 matrix algebras [7, 8, 78]. Thus, a type III�
factor with 0 < � < 1, which has the integral powers of � as Connes spectrum,
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is generated by the infinite tensorial power of the algebra M2.C/ of complex 2 � 2
matrices in the Gelfand–Naimark–Segal representation [19] defined by the state

!.A1 ˝ A2 ˝ � � � ˝AN ˝ 1 � � � / D
Y

n

tr.An��/ (15.27)

with An 2 M2.C/, 0 < � < 1 and

�� D 1

1C �

�
1 0

0 �

�

: (15.28)

A type III1 factor is obtained from an analogous formula for the infinite product
of complex 3 � 3 matrices in the representation defined by tracing with the matrix

��; D 1

1C �C 

0

@
1 0 0

0 � 0

0 0 

1

A (15.29)

where �; > 0 are such that log�
log … Q.

The earliest proof of the occurrence of type III factors in LQP was given by
Araki in [2–4] for the case of a free, scalar field. Type III factors appear also in non-
relativistic equilibrium quantum statistical mechanics in the thermodynamic limit at
nonzero temperature [7].

General proofs that the local algebras of a relativistic quantum field in the vacuum
representation are of type III1 rely on the following ingredients19:

• The Reeh–Schlieder Theorem.
• The Bisognano Wichmann Theorem for the wedge algebrasF.W/, that identifies

their Tomita–Takesaki modular groups w.r.t. the vacuum with geometric trans-
formations (Lorentz-boosts). The corresponding modular operators have RC as
spectrum. Moreover, by locality and the invariance of the wedge under dilations
the spectrum is the same for other cyclic and separating vectors [5, 47]. Hence
the wedge algebra is of type III1.

• Assumptions about non-triviality of scaling limits that allows to carry the
arguments for wedge algebras over to double cone algebras [27, 47].

See also [43, 44, 64] and [16] for other aspects of the type question.

19The hyperfiniteness, i.e., the approximability by finite dimensional matrix algebras, follows from
the split property considered in Sect. 15.5.1.
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15.4.1 Some Consequences of the Type III Property

We now collect some important facts about local algebras that follow from their type
III character. Since the focus is on the observables, we state the results in terms of
the algebras A.O/ rather than F.O/.

15.4.1.1 Local Preparability of States

For every projectorE 2 A.O/ there is an isometryW 2 A.O/ such that if ! is any
state and !W . � / WD !.W � � W /, then

!W .E/ D 1; (15.30)

but

!W .B/ D !.B/ for B 2 A.O0/: (15.31)

In words: Every state can be changed into an eigenstate of a local projector, by
a local operation that is independent of the state and does not affect the state in the
causal complement of the localization region of the projector.

This result is a direct consequence of the type III property. It is worth noting that
in a slightly weaker form it can be derived from the general assumptions of LQP,
without recourse to the Bisognano–Wichmann theorem and the scaling assumptions
mentioned above: In [15] H.J. Borchers proved that the isometryW can in any case
be found in an algebra A.O"/ with

O" WD O C fx W jxj < "g; " > 0: (15.32)

Equation (15.31) is then only claimed for B 2 A.O0"/, of course.
In Sect. 15.5.1 we shall consider a strengthened version of the local preparability,

but again with W 2 A.O"/, under a further assumption on the local algebras.

15.4.1.2 Absence of Pure States

A type III factor A has no pure states,20 i.e., for every ! there are !1 and !2,
different from !, such that

!.A/ D 1

2
!1.A/C 1

2
!2.A/ (15.33)

20Recall that “state” means here always normal state, i.e. a positive linear functional given by a
density matrix in the Hilbert space where A operates. As a C� algebra A has pure states, but these
correspond to disjoint representations on different (non separable) Hilbert spaces.
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for all A 2 A. This means that for local algebras it is not meaningful to
interpret statistical mixtures as “classical” probability distributions superimposed
on pure states having a different “quantum mechanical” probability interpretation,
as sometimes done in textbooks on non-relativistic quantum mechanics.

On the other hand every state on A is a vector state, i.e., for every ! there is a
(non-unique!)21 ! 2 H such that

!.A/ D h !;A !i (15.34)

for all A 2 A [88, Cor. 3.2, p. 336].
A type III factors has these mathematical features in common with the abelian

von Neumann algebra L1.R/ that also has no pure states whereas every state
is a vector state in the natural representation on L2.R/. But while L1.R/ is
decomposable into a direct integral of trivial, one-dimensional algebras, type III
factors are noncommutative, indecomposable and of infinite dimension.

15.4.1.3 Local Comparison of States Cannot be Achieved
by Means of Positive Operators

For O a subset of Minkowski space and two states ' and ! we define their local
difference by

DO.'; !/ WD supfj'.A/� !.A/j W A 2 A.O/; kAk 	 1g: (15.35)

If A.O/ were a type I algebra local differences could, for a dense set of states,
be tested by means of positive operators in the following sense:

For a dense set of states ' there is a positive operator P';O such that

DO.'; !/ D 0 if and only if !.P';O/ D 0: (15.36)

For a type III algebra, on the other hand, such operators do not exist for any state.
Failure to recognize this has in the past led to spurious “causality problems”

[59], inferred from the fact that for a positive operator P an expectation value
!.eiHtPe�iHt / with H � 0 cannot vanish in an interval of t’s without vanishing
identically.22 In a semi-relativistic model for a gedankenexperiment due to Fermi
[46] such a positive operator is used to measure the excitation of an atom due
to a photon emitted from another atom some distance away. Relativistic causality
requires that the excitation takes place only after a time span t � r=c where r

21If the algebra is represented in a “standard form” in the sense of modular theory the vector can
be uniquely fixed by taking it from the corresponding “positive cone” [19].
22This holds because t 7! P 1=2e�iHt is analytic in the complex lower half plane for all vectors
 2 H if H � 0.
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is the distance between the atoms and c the velocity of light. However, due to
the mathematical fact mentioned, an alleged excitation measured by means of a
positive operator is in conflict with this requirement. This is not a problem for
relativistic quantum field theory, however, where the local difference of states
defined by (15.35) shows perfectly causal behavior, while a positive operator
measuring the excitation simply does not exist [30].23

15.4.1.4 Remarks on the Use of Approximate Theories

The above discussion of “causality problems” prompts the following remarks:
Constructions of fully relativistic models for various phenomena where interac-

tions play a decisive role are usually very hard to carry out in practice. Hence one
must as a rule be content with some approximations (e.g., divergent perturbation
series without estimates of error terms), or semi-relativistic models with various
cut-offs (usually at high energies). Such models usually violate one or more of
the general assumptions underlying LQP. Computations based on such models may
well lead to results that are in conflict with basic principles of relativistic quantum
physics such as an upper limit for the propagation speed of causal influence, but this
is quite natural and should not be a cause of worry (or of unfounded claims) once
the reason is understood.

15.5 Entanglement in LQP

If A1 and A2 commute, a state ! on A1_A2 is by definition entangled, if it can not
be approximated by convex combinations of product states.

Entangled states are ubiquitous in LQP due to the following general mathemat-
ical fact [36]: If A1 and A2 commute, are nonabelian, possess each a cyclic vector
and A1 _ A2 has a separating vector, then the entangled states form a dense, open
subset of the set of all states.

This applies directly to the local algebras of LQP because of the Reeh–Schlieder
Theorem. Thus the entangled states on A.O1/ _ A.O2/ are generic for space-like
separated, bounded open sets O1 and O2.

The type III property implies even stronger entanglement:

If A is a type III factor, then A _ A0 does not have any (normal) product states,
i.e., all states are entangled for the pair A, A0.

23Already the Corollary to the Reeh–Schlieder Theorem in Sec. 15.3.3. implies that excitation
cannot be measured by a local positive operator since the expectation value of such an operator
cannot be zero in a state with bounded energy spectrum. The nonexistence of any positive operator
satisfying (15.36) is a stronger statement.
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Haag duality means by definition that A.O/0 D A.O0/. Thus, if Haag duality holds,
a quantum field in a bounded space-time region can never be disentangled from the
field in the causal complement.

By allowing a small positive distance between the regions, however, disentangle-
ment is possible, provided the theory has a certain property that mitigates to some
extent the rigid coupling between a local region and its causal complement implied
by the type III character of the local algebras. This will be discussed next.

15.5.1 Causal Independence and Split Property

A pair of commuting von Neumann algebras, A1 and A2, in a common B.H/ is
causally (statistically) independent if for every pair of states, !1 on A1 and !2 on
A2, there is a state ! on A1 _ A2 such that

!.AB/ D !1.A/!2.B/ (15.37)

for A 2 A1, B 2 A2.
In other words: States can be independently prescribed on A1 and A2 and

extended to a common, uncorrelated state on the joint algebra. This is really the
von Neumann concept of independent systems.

The split property [38] for commuting algebras A1, A2 means that there is a type
I factor N such that

A1 � N � A02 (15.38)

which again means: There is a tensor product decomposition H D H1 ˝ H2 such
that

A1 � B.H1/˝ 1 ; A2 � 1 ˝ B.H2/: (15.39)

In the field theoretic context causal independence and split property are equivalent
[22, 84, 90].

The split property for local algebras separated by a finite distance can be derived
from a condition (nuclearity) that expresses the idea that the local energy level
density (measured in a suitable sense) does not increase too fast with the energy
[28, 29, 33, 34]. Nuclearity is not fulfilled in all models (some generalized free
fields provide counterexamples), but it is still a reasonable requirement.

The split property together with the type III property of the strictly local algebras
leads to a strong version of the local preparability of states. The following result is
essentially contained in [31]. See also [84, 90].
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Theorem 5 (Strong Local Preparability) For every state ' (“target state”) and
every bounded open region O there is an isometry W 2 A.O"/ (with O" slightly
larger than O, cf. (15.32)) such that for an arbitrary state ! (“input state”)

!W .AB/ D '.A/!.B/ (15.40)

for A 2 A.O/, B 2 A.O"/
0, where !W . � / � !.W � � W /.

In particular, !W is uncorrelated and its restriction to A.O/ is the target state
', while in the causal complement of O" the preparation has no effect on the input
state !. Moreover,W depends only on the target state and not on the input state.

Proof The split property implies that we can write A.O/ � B.H1/˝ 1, A.O"/
0 �

1 ˝ B.H2/.
By the type III property of A.O/ we have '.A/ D h�; A�i for A 2 A.O/, with

� D �1 ˝ �2. (The latter because every state on a type III factor is a vector state, and
we may regard A.O/ as a type III factor contained in B.H1/.) ThenE WD E�1 ˝1 2
A.O"/

00 D A.O"/.
By the type III property of A.O"/ there is a W 2 A.O"/ with WW� D E ,

W �W D 1. The second equality implies !.W �BW/ D !.B/ for B 2 A.O"/
0:

On the other hand, EAE D '.A/E for A 2 A.O/ and multiplying this equation
from left with W � and right with W , one obtains

W �AW D '.A/1 (15.41)

by employingE D WW�and W �W D 1. Hence

!.W �ABW/ D !.W �AWB/ D '.A/!.B/: (15.42)

ut
The theorem implies also that any state on A.O/ _ A.O"/

0 can be disentangled
by a local operation in A.O"/:

Given a state ! on A.O/ _ A.O"/
0 there is, by the preceding Theorem, an

isometryW 2 A.O�/ such that

!W .AB/ D !.A/!.B/ : (15.43)

for all A 2 A.O/, B 2 A.O0"/.
In particular: Leaving a security margin between a bounded domain and its causal

complement, the global vacuum state !.�/ D h�; � �i, which, being cyclic and
separating for the local algebras is entangled between A.O/ and any A. QO/ �
A.O"/

0 [36, 72], can be disentangled by a local operation producing an uncorrelated
state on A.O/ _ A.O"/

0 that is identical to the vacuum state on each of the factors.
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15.5.2 Conclusions

Here are some lessons that can be drawn from this brief survey of relativistic
quantum physics:

• LQP provides a framework which resolves the apparent paradoxes resulting from
combining the particle picture of quantum mechanics with special relativity.
This resolution is achieved by regarding the system as composed of quantum
fields in space-time, represented by a net of local algebras. A subsystem is
represented by one of the local algebras, i.e., the fields in a specified part of
space-time. “Particle” is a derived concept that emerges asymptotically at large
times but (for theories with interactions) is usually not strictly defined at finite
times. Irrespective of interactions particle states can never be created by operators
strictly localized in bounded regions of space-time.

• The fact that local algebras have no pure states is relevant for interpretations of
the state concept. It lends support to the interpretation that a state refers to a (real
or imagined) ensemble of identically prepared copies of the system but makes it
hard to maintain that it is an inherent attribute of an individual copy.

• The type III property is relevant for causality issues and local preparability of
states, and responsible for “deeply entrenched” entanglement of states between
bounded regions and their causal complements, that is, however, mitigated by the
split property.

On the other hand, the framework of LQP does not per se resolve all “riddles”
of quantum physics. Those who are puzzled by the violation of Bell’s inequalities
in EPR type experiments will not necessarily by enlightened by learning that local
algebras are type III. Moreover, the terminology has still an anthropocentric ring
(“observables”, “operations”) as usual in Quantum Mechanics. This is disturbing
since physics is concerned with more than designed experiments in laboratories.
We use quantum (field) theories to understand processes in the interior of stars,
in remote galaxies billions of years ago, or even the “quantum fluctuations” that
are allegedly responsible for fine irregularities in the 3K background radiation. In
none of these cases “observers” were/are around to “prepare states” or “reduce
wave packets”! A fuller understanding of the emergence of macroscopic “effects”
from the microscopic realm,24 without invoking “operations” or “observations”,
and possibly a corresponding revision of the vocabulary of quantum physics is still
called for.25

24See [12] for important steps in this direction and [49] for a thorough analysis of foundational
issues of QM.
25Already Max Planck in his Leiden lecture of 1908 speaks of the “Emanzipierung von den
antrophomorphen Elementen” as a goal, see [76], p. 49.
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